A Novel Continuous-Variable Quantum Key Distribution Scheme Based on Multi-Dimensional Multiplexing Technology
Abstract
:1. Introduction
2. The Pilot Alternately Assisted Orthogonal Dual-Polarization CV-QKD Scheme Based on Multi-Dimensional Multiplexing Technology
3. Theoretical Analysis of the Crosstalk between Pilot and Quantum Signal in the Multi-Dimensional Multiplexing LLO CV-QKD System
4. Simulations and Performance Estimation
4.1. Influence Mechanism of the PER on SKR under Different Transmission Distances
4.2. Research on Joint Optimization of Multiple Parameters
4.3. The Influence of the Pulse Width and Research on Repetition Frequency
4.4. SKR Analysis under Relatively low PER
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Secure Key Rate for GMCS CV-QKD
References
- Rozenman, G.G.; Kundu, N.K.; Liu, R.; Zhang, L.; Maslennikov, A.; Reches, Y.; Youm, H.Y. The quantum internet: A synergy of quantum information technologies and 6G networks. IET Quantum Commun. 2023, 4, 147–166. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984; Volume 175. [Google Scholar]
- Wang, S.; Yin, Z.-Q.; He, D.-Y.; Chen, W.; Wang, R.-Q.; Ye, P.; Zhou, Y.; Fan-Yuan, G.-J.; Wang, F.-X.; Zhu, Y.-G.; et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Zhong, Z.-Q.; Wang, S.; Zhan, X.-H.; Yin, Z.-Q.; Chen, W.; Guo, G.-C.; Han, Z.-F. Realistic and general model for quantum key distribution with entangled-photon sources. Phys. Rev. A 2022, 106, 052606. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 2013, 7, 378–381. [Google Scholar] [CrossRef]
- Jain, N.; Chin, H.M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirandola, S.; Pedersen, T.B.; Kolb, M.; Ömer, B.; et al. Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 2022, 13, 4740. [Google Scholar] [CrossRef]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Lam, P.K. Quantum Cryptography Without Switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G.; Weedbrook, C.; Braunstein, S.L.; Lloyd, S.; Gehring, T.; Jacobsen, C.S.; Andersen, U.L. High-rate measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 397–402. [Google Scholar] [CrossRef]
- Lo, H.-K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photonics 2014, 8, 595–604. [Google Scholar] [CrossRef]
- Laudenbach, F.; Pacher, C.; Fung, C.F.; Poppe, A.; Peev, M.; Schrenk, B.; Hentschel, M.; Walther, P.; Hübel, H. Continuous-Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations. Adv. Quantum Technol. 2018, 1, 1800011. [Google Scholar] [CrossRef]
- Qi, B.; Huang, L.L.; Qian, L.; Lo, H.K. Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 2007, 76, 052323. [Google Scholar] [CrossRef]
- Liu, W.; Cao, Y.; Wang, X.; Li, Y. Continuous-variable quantum key distribution under strong channel polarization disturbance. Phys. Rev. A 2020, 102, 032625. [Google Scholar] [CrossRef]
- Wang, T.; Huang, P.; Zhou, Y.; Liu, W.; Zeng, G. Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator. Phys. Rev. A 2018, 97, 012310. [Google Scholar] [CrossRef]
- Heismann, F.; Hansen, P.B.; Korotky, S.K.; Raybon, G.; Veselka, J.J.; Whalen, M.S. Automatic polarization demultiplexer for polarization-multiplexed transmission systems. Electron. Lett. 1993, 29, 1965–1966. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, Y.; Xu, Y.; Yu, S. Polarization-multiplexed continuous-variable quantum key distribution. In Proceedings of the Conference on Lasers and Electro-Optics, Washington, DC, USA, 10–15 May 2020. paper JTu2A.15. [Google Scholar]
- Wang, H.; Pi, Y.; Huang, W.; Li, Y.; Shao, Y.; Yang, J.; Liu, J.; Zhang, C.; Zhang, Y.; Xu, B. High-speed Gaussian-modulated continuous-variable quantum key distribution with a local local oscillator based on pilot-tone assisted phase compensation. Opt. Express 2020, 28, 32882–32893. [Google Scholar] [CrossRef] [PubMed]
- Roumestan, F.; Ghazisaeidi, A.; Renaudier, J.; Vidarte, L.T.; Diamanti, E.; Grangier, P. High-Rate Continuous Variable Quantum Key Distribution Based on Probabilistically Shaped 64 and 256-QAM. In Proceedings of the European Conference on Optical Communication, Bordeaux, France, 3–16 September 2021. paper Th2G3. [Google Scholar]
- Qi, B.; Lougovski, P.; Pooser, R.; Grice, W.; Bobrek, M. Generating the Local Oscillator “Locally” in Continuous-Variable Quantum Key Distribution Based on Coherent Detection. Phys. Rev. X 2015, 5, 041009. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, Y.; Wang, H.; Shao, Y.; Zhang, T.; Liu, J.; Pi, Y.; Ye, T.; Huang, W.; Li, Y.; et al. An Orthogonal Dual-Polarization and Time Multiplexing Scheme of Continuous-Variable Quantum Key Distribution. In Proceedings of the 2023 21st International Conference on Optical Communications and Networks (ICOCN), Qufu, China, 31 July–3 August 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 2011, 84, 062317. [Google Scholar] [CrossRef]
- Soh, D.B.S.; Brif, C.; Coles, P.J.; Lütkenhaus, N.; Camacho, R.M.; Urayama, J.; Sarovar, M. Self-Referenced Continuous-Variable Quantum Key Distribution Protocol. Phys. Rev. X 2015, 5, 041010. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Shao, Y.; Pi, Y.; Li, Y.; Liu, B.; Huang, W.; Xu, B.-J. Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system. Opt. Lett. 2022, 47, 3307–3310. [Google Scholar] [CrossRef]
- Li, M.; Cvijetic, M. Continuous-Variable Quantum Key Distribution with Self-Reference Detection and Discrete Modulation. IEEE J. Quantum Electron. 2018, 54, 1–8. [Google Scholar] [CrossRef]
- Kleis, S.; Rueckmann, M.; Schaeffer, C.G. Continuous-variable quantum key distribution with a real local oscillator and without auxiliary signals. arXiv 2019, arXiv:1908.03625v1. [Google Scholar]
- Ma, L.; Yang, J.; Zhang, T.; Shao, Y.; Liu, J.; Luo, Y.; Wang, H.; Huang, W.; Fan, F.; Zhou, C.; et al. Practical continuous-variable quantum key distribution with feasible optimization parameters. Sci. China Inf. Sci. 2023, 66, 180507. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Diamanti, E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 2013, A87, 062313. [Google Scholar] [CrossRef]
- Pirandola, S. Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks. Phys. Rev. Res. 2021, 3, 043014. [Google Scholar] [CrossRef]
- Pirandola, S. Limits and security of free-space quantum communications. Phys. Rev. Res. 2021, 3, 013279. [Google Scholar] [CrossRef]
s | PER | Optimal Repetition Frequency | q1 | q2 | The Total Degree of Isolation | SKR |
---|---|---|---|---|---|---|
−20 dB | inf | 302.5 MHz | −65.8 dB | −263.1 dB | ≈−85.8 dB | 11.740 Mbit/s |
−20 dB | 20 dB | 297.5 MHz | −68.0 dB | −272.1 dB | ≈−88.0 dB | 5.863 Mbit/s |
−20 dB | 18 dB | 292.5 MHz | −70.4 dB | −281.5 dB | ≈−90.4 dB | 2.933 Mbit/s |
−30 dB | inf | 334.0 MHz | −54.0 dB | −215.9 dB | ≈−84.0 dB | 12.801 Mbit/s |
−30 dB | 20 dB | 325.0 MHz | −57.0 dB | −228.0 dB | ≈−87.0 dB | 6.373 Mbit/s |
−30 dB | 18 dB | 319.0 MHz | −59.2 dB | −236.7 dB | ≈−89.2 dB | 3.175 Mbit/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, H.; Pan, Y.; Shao, Y.; Zhang, T.; Huang, W.; Li, Y.; Xu, B. A Novel Continuous-Variable Quantum Key Distribution Scheme Based on Multi-Dimensional Multiplexing Technology. Appl. Sci. 2024, 14, 934. https://doi.org/10.3390/app14020934
Zhang S, Wang H, Pan Y, Shao Y, Zhang T, Huang W, Li Y, Xu B. A Novel Continuous-Variable Quantum Key Distribution Scheme Based on Multi-Dimensional Multiplexing Technology. Applied Sciences. 2024; 14(2):934. https://doi.org/10.3390/app14020934
Chicago/Turabian StyleZhang, Shuai, Heng Wang, Yan Pan, Yun Shao, Tao Zhang, Wei Huang, Yang Li, and Bingjie Xu. 2024. "A Novel Continuous-Variable Quantum Key Distribution Scheme Based on Multi-Dimensional Multiplexing Technology" Applied Sciences 14, no. 2: 934. https://doi.org/10.3390/app14020934
APA StyleZhang, S., Wang, H., Pan, Y., Shao, Y., Zhang, T., Huang, W., Li, Y., & Xu, B. (2024). A Novel Continuous-Variable Quantum Key Distribution Scheme Based on Multi-Dimensional Multiplexing Technology. Applied Sciences, 14(2), 934. https://doi.org/10.3390/app14020934