Distillers’ Grains Peptides Scavenge Free Radicals and Influence Volatile Compounds of Chi-Aroma Baijiu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation of Distillers’ Grain Filtrate Peptides
2.3. Preparation of Chi-Aroma Baijiu Peptides
2.4. Peptide Structure Identification
2.5. Antioxidant Activity of Distillers’ Grain Filtrate Peptides
2.6. Determination of Free Radicals in Chi-Aroma Baijiu
2.7. Determination of VOCs in Chi-Aroma Baijiu
2.8. Simulated Interaction between Peptides and Ester Compounds
2.8.1. Ultraviolet Spectroscopy Analysis
2.8.2. Thermodynamic Data Determination
2.9. Statistical Analysis
3. Results and Discussion
3.1. Amino Acid Composition Analysis
3.2. Concentration of the Five Peptides in Distillers’ Grain Filtrate and Chi-Aroma Baijiu
3.3. Antioxidant Capacity of Five Peptides
3.4. Free Radical Scavenging Activity upon the Addition of Five Peptides in Chi-Aroma Baijiu
3.5. Changes in VOCs upon the Addition of Five Peptides in Chi-Aroma Baijiu
3.5.1. Changes in VOCs Content
3.5.2. Changes of VOC Characteristics
3.6. Simulation of the Interaction between Five Peptides and Ester Compounds in Chi-Aroma Baijiu
3.7. Interaction Mechanism between Peptides and Esters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, W.; Fan, Z.; Du, A.; Li, Y.; Zhang, R.; Shi, Q.; Shi, L.; Chu, X. Recent advances in Baijiu analysis by chromatography based technology—A review. Food Chem. 2020, 324, 126899. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Q.; Fei, Y.; Zhao, W.; Brennan, C.; Bai, W. The effect of aged pork fat on the quality and volatile compounds of Chi-aroma Baijiu. Food Sci. Technol. 2023, 43, e109922. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, F.; He, S.; Li, W.; Wu, Z. Promoting lipid oxidation and release of volatiles of pork fat pulp by lipase, blue light with riboflavin in liquor immersion. J. Food Sci. 2022, 87, 5276–5288. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Li, L.; He, S.; Yu, J.; Tian, X.; Wu, Z. Improving the lipid oxidation in pork fat processing for Chi-aroma Baijiu through pretreatments and segmented soaking with liquor. LWT 2020, 130, 109624. [Google Scholar] [CrossRef]
- Zhang, F.J.; Zhang, R.J.; He, S.G.; Guan, J.Y.; Feng, Z.X.; Wu, Z.Q. Formation of free radicals in Chi-aroma Baijiu during aging process with fat pork. Free Radic. Res. 2023, 57, 271–281. [Google Scholar] [CrossRef]
- Hines, M.R.; Goetz, J.E.; Gomez-Contreras, P.C.; Rodman, S.N.; Liman, S.; Femino, E.L.; Kluz, P.N.; Wagner, B.A.; Buettner, G.R.; Kelley, E.E.; et al. Extracellular biomolecular free radical formation during injury. Free. Radic. Biol. Med. 2022, 188, 175–184. [Google Scholar] [CrossRef]
- Gupta, N.; Verma, K.; Nalla, S.; Kulshreshtha, A.; Lall, R.; Prasad, S. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules 2020, 25, 5390. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef]
- Zhu, F.; Cao, J.; Song, Y.; Yu, P.; Su, E. Plant Protein-Derived Active Peptides: A Comprehensive Review. J. Agric. Food Chem. 2023, 71, 20479–20499. [Google Scholar] [CrossRef]
- Hu, F.; Ci, A.T.; Wang, H.; Zhang, Y.Y.; Zhang, J.G.; Thakur, K.; Wei, Z.J. Identification and hydrolysis kinetic of a novel antioxidant peptide from pecan meal using Alcalase. Food Chem. 2018, 261, 301–310. [Google Scholar] [CrossRef]
- Jia, W.; Du, A.; Fan, Z.; Wang, Y.; Shi, L. Effects of Short-Chain Peptides on the Flavor Profile of Baijiu by the Density Functional Theory: Peptidomics, Sensomics, Flavor Reconstitution, and Sensory Evaluation. J. Agric. Food Chem. 2022, 70, 9547–9556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Zhao, Y.; Wu, Q.; Wan, Y.; Yu, Y. Endogenous Peptides Identified in Soy Sauce Aroma Style Baijiu Which Interacts with the Main Flavor Compounds during the Distillation Process. Foods 2022, 11, 3339. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Yang, J.; Liu, Y.H.; Wang, Y.Z.; Zhang, W.X.; Deng, Y. Optimizing Semisimultaneous Saccharification and Fermentation for Ethanol Production from Chinese Distiller’s Spent Grains. J. Am. Soc. Brew. Chem. 2015, 73, 190–194. [Google Scholar] [CrossRef]
- Galanakis, C.M. Sustainable Applications for the Valorization of Cereal Processing By-Products. Foods 2022, 11, 241. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Yin, Z.; Sun, J.; Wang, B.; Zhao, D.; Zeng, X.A.; Li, H.; Huang, M.; Sun, B. Optimization of Jiuzao protein hydrolysis conditions and antioxidant activity in vivo of Jiuzao tetrapeptide Asp-Arg-Glu-Leu by elevating the Nrf2/Keap1-p38/PI3K-MafK signaling pathway. Food Funct. 2021, 12, 4808–4824. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, C.; Zeng, G.; Zhang, X.; Xiang, L.; Wan, C.; Yu, Y. Identification and characterization of a novel tetrapeptide from enzymatic hydrolysates of Baijiu byproduct. Food Sci. Hum. Wellness 2022, 11, 1641–1649. [Google Scholar] [CrossRef]
- Liao, Q.J.; An, M.Z.; Li, Y.H.; Zhou, H.L.; Wang, X.Q.; Wang, F.; Guo, Y. Study of Dipeptide and Cyclodipeptide in Yellow Water of Distillers Grains. Liquor-Mak. Sci. Technol. 2018, 292, 17–23. [Google Scholar]
- Huang, D.; Wang, L.; Li, K.; Liu, L.; Chen, X.; He, L.; Wang, L.; Song, A. Alkali-assisted extraction, characterization and encapsulation functionality of enzymatic hydrolysis-resistant prolamin from distilled spirit spent grain. Int. J. Biol. Macromol. 2024, 271, 132664. [Google Scholar] [CrossRef]
- Wei, D.; Fan, W.; Xu, Y. In Vitro Production and Identification of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides Derived from Distilled Spent Grain Prolamin Isolate. Foods 2019, 8, 390. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, J.; Yin, Z.; Li, H.; Sun, X.; Zheng, F. Evaluation of antioxidant peptides generated from Jiuzao (residue after Baijiu distillation) protein hydrolysates and their effect of enhancing healthy value of Chinese Baijiu. J. Sci. Food Agric. 2019, 100, 59–73. [Google Scholar] [CrossRef]
- Wu, J.; Huo, J.; Huang, M.; Zhao, M.; Luo, X.; Sun, B. Structural Characterization of a Tetrapeptide from Sesame Flavor-Type Baijiu and Its Preventive Effects against AAPH-Induced Oxidative Stress in HepG2 Cells. J. Agric. Food Chem. 2017, 65, 10495–10504. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci. Technol. 2020, 105, 308–322. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, B.; Wei, W.; Tian, X.; Wu, Z. Antioxidant and Anti-Diabetic Activities of Polysaccharides from Guava Leaves. Molecules 2019, 24, 1343. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.X.; Liu, X.L.; Zheng, X.Q.; Wang, X.J.; He, J.F. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem. 2016, 204, 427–436. [Google Scholar] [CrossRef]
- Shen, F.; Wang, T.; Zhang, R.; Zhong, B.; Wu, Z. Metabolism and release of characteristic components and their enzymatic mechanisms in Pericarpium Citri Reticulatae co-fermentation. Food Chem. 2024, 432, 137227. [Google Scholar] [CrossRef]
- Huang, M.; Huo, J.; Wu, J.; Zhao, M.; Sun, J.; Zheng, F.; Sun, X.; Li, H. Structural characterization of a tetrapeptide from Sesame flavor-type Baijiu and its interactions with aroma compounds. Food Res. Int. 2019, 119, 733–740. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Q.; Zhou, P.P.; Li, N.N.; Han, S.Y. Copigmentation evidence of oenin with phenolic compounds: A comparative study of spectrographic, thermodynamic and theoretical data. Food Chem. 2020, 313, 126163. [Google Scholar] [CrossRef]
- Dorl, S.; Winkler, S.; Mechtler, K.; Dorfer, V. MS Ana: Improving Sensitivity in Peptide Identification with Spectral Library Search. J. Proteome Res. 2023, 22, 462–470. [Google Scholar] [CrossRef]
- Wei, D.; Fan, W.-l.; Xu, Y. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis. Food Chem. 2021, 353, 129521. [Google Scholar] [CrossRef]
- Jiang, Y.; Zang, K.; Sun, J.; Zeng, X.A.; Li, H.; Brennan, C.; Huang, M.; Xu, L. Preparation of modified Jiuzao glutelin isolate with carboxymethyl chitosan by ultrasound-stirring assisted Maillard reaction and its protective effect of loading resveratrol/quercetin in nano-emulsion. Ultrason. Sonochem. 2022, 88, 106094. [Google Scholar] [CrossRef]
- Du, A.; Jia, W. Virtual screening, identification, and potential antioxidant mechanism of novel bioactive peptides during aging by a short-chain peptidomics, quantitative structure-activity relationship analysis, and molecular docking. Food Res. Int. 2023, 172, 113129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, Q.; Xu, Y. Lichenysin, a cyclooctapeptide occurring in Chinese liquor jiannanchun reduced the headspace concentration of phenolic off-flavors via hydrogen-bond interactions. J. Agric. Food Chem. 2014, 62, 8302–8307. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Fang, X.; Wang, C.; Yang, Y.; Tu, B.; Fang, Q. Terminus-immobilization effect on peptide conformations and peptide–peptide interactions. Nano Res. 2023, 16, 13498–13508. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, D.; Liu, M.; Li, Y.; Lv, R.; Li, X.; Wang, Q.; Ren, D.; Wu, L.; Zhou, H. Identification of Antioxidant Peptides Derived from Tilapia (Oreochromis niloticus) Skin and Their Mechanism of Action by Molecular Docking. Foods 2022, 11, 2576. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Zhang, S.; Wang, Z.; Tian, S.; Wu, Q. Identification and Free Radical Scavenging Activity of Oligopeptides from Mixed-Distillate Fermented Baijiu Grains and Soy Sauce Residue. Metabolites 2024, 14, 298. [Google Scholar] [CrossRef]
- Davies, M.J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods 2016, 109, 21–30. [Google Scholar] [CrossRef]
- Bartoszek, M.; Polak, J. An electron paramagnetic resonance study of antioxidant properties of alcoholic beverages. Food Chem. 2012, 132, 2089–2093. [Google Scholar] [CrossRef]
- Yuan, J.F.; Chen, Z.Y.; Wang, D.H.; Gong, M.G.; Qiu, Z.J. Microwave-induced free radicals production in red wine and model wine by electron paramagnetic resonance spin trapping. J. Food Process. Preserv. 2021, 45, e15407. [Google Scholar] [CrossRef]
- Liu, F.; Lai, S.; Tong, H.; Lakey, P.S.J.; Shiraiwa, M.; Weller, M.G.; Poschl, U.; Kampf, C.J. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal. Bioanal. Chem. 2017, 409, 2411–2420. [Google Scholar] [CrossRef]
- Figueroa, J.D.; Barroso-Torres, N.; Morales, M.; Herrera, B.; Aranda, M.; Dorta, E.; Lopez-Alarcon, C. Antioxidant Capacity of Free and Peptide Tryptophan Residues Determined by the ORAC (Oxygen Radical Absorbance Capacity) Assay Is Modulated by Radical-Radical Reactions and Oxidation Products. Foods 2023, 12, 4360. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.L.; Dean, R.T. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem. J. 1997, 324, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Scalone, G.L.; Cucu, T.; De Kimpe, N.; De Meulenaer, B. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems. J. Agric. Food Chem. 2015, 63, 5364–5372. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Lan, J.; Liu, B.; Wang, X.; Zhang, S.; Zuo, Y. Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry. Foods 2024, 13, 2492. [Google Scholar] [CrossRef]
- Yue, C.; Li, W.; Li, C.; Wang, Z.; Peng, H.; Yang, P. Differential characterization of volatile components and aroma sensory properties of different types of Hehong tea (Congou black tea). Flavour Fragr. J. 2022, 38, 61–72. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, W.; Wang, H.; Wang, S.; Yan, J.; Dong, Z.; Zhao, P.; Ren, F.; Chen, L. Comparative Analysis of Texture Characteristics, Sensory Properties, and Volatile Components in Four Types of Marinated Tofu. Foods 2024, 13, 2068. [Google Scholar] [CrossRef]
- Liu, X.-H.; Xi, P.-X.; Chen, F.-J.; Xu, Z.-H.; Zeng, Z.-Z. Spectroscopic studies on binding of 1-phenyl-3-(coumarin-6-yl)sulfonylurea to bovine serum albumin. J. Photochem. Photobiol. B Biol. 2008, 92, 98–102. [Google Scholar] [CrossRef]
- Lanzillotti, M.; Brodbelt, J.S. Comparison of Top-Down Protein Fragmentation Induced by 213 and 193 nm UVPD. J. Am. Soc. Mass. Spectrom. 2023, 34, 279–285. [Google Scholar] [CrossRef]
- Xie, D.; Deng, F.; Shu, J.; Zhu, C.; Hu, X.; Luo, S.; Liu, C. Impact of the frying temperature on protein structures and physico-chemical characteristics of fried surimi. Int. J. Food Sci. Technol. 2022, 57, 4211–4221. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Zhang, M.; Zhang, M.; Cheng, W.; Xu, B. Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol-Protein Interaction Approach. Foods 2023, 12, 462. [Google Scholar] [CrossRef]
- Ju, P.; Fan, H.; Liu, T.; Cui, L.; Ai, S. Probing the interaction of flower-like CdSe nanostructure particles targeted to bovine serum albumin using spectroscopic techniques. J. Lumin. 2011, 131, 1724–1730. [Google Scholar] [CrossRef]
- Wang, Z.; Li, D.; Jin, J. Study on the interaction of puerarin with lysozyme by spectroscopic methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 866–870. [Google Scholar] [CrossRef]
Baijiu Sample | DMPO-RO (Spins) | DMPO-OH (Spins) |
---|---|---|
CK | 2.86 × 1015 | 1.19 × 1015 |
PV | 2.55 × 1015 | 1.07 × 1013 |
PA | 2.53 × 1015 | 2.38 × 1013 |
GL | 1.82 × 1015 | 2.79 × 1013 |
DF | 2.08 × 1015 | 1.13 × 1013 |
PL | 1.84 × 1015 | 3.57 × 1013 |
PA | PV | GL | DF | PL | GSH | |
---|---|---|---|---|---|---|
K1 (mol/L) | 820.73 | 783.37 | 136.03 | 230.44 | 180.71 | 250.38 |
K2 (mol/L) | 621.37 | 237.25 | 303.89 | 178.39 | 284.24 | 1087.33 |
ΔG10 (KJ/mol) | −16.62 | −16.51 | −12.17 | −13.48 | −12.87 | −13.68 |
ΔG20 (KJ/mol) | −15.93 | −13.54 | −14.15 | −12.84 | −13.99 | −17.32 |
ΔH10 (KJ/mol) | −35.52 | −24.02 | 5.36 | 5.85 | −25.22 | 19.8 |
ΔH20 (KJ/mol) | −26.67 | −48.75 | −24.84 | −26.01 | −32.03 | 6.35 |
ΔS10 (J/mol) | −63.42 | −7.51 | 58.8 | 64.86 | −41.44 | 112.3 |
ΔS20 (J/mol) | −36.04 | −35.21 | −35.87 | −44.16 | −60.04 | 79.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Hu, X.; Luo, Y.; Zheng, S.; Wu, Z. Distillers’ Grains Peptides Scavenge Free Radicals and Influence Volatile Compounds of Chi-Aroma Baijiu. Appl. Sci. 2024, 14, 9326. https://doi.org/10.3390/app14209326
Zhang R, Hu X, Luo Y, Zheng S, Wu Z. Distillers’ Grains Peptides Scavenge Free Radicals and Influence Volatile Compounds of Chi-Aroma Baijiu. Applied Sciences. 2024; 14(20):9326. https://doi.org/10.3390/app14209326
Chicago/Turabian StyleZhang, Renjie, Xi Hu, You Luo, Siqin Zheng, and Zhenqiang Wu. 2024. "Distillers’ Grains Peptides Scavenge Free Radicals and Influence Volatile Compounds of Chi-Aroma Baijiu" Applied Sciences 14, no. 20: 9326. https://doi.org/10.3390/app14209326
APA StyleZhang, R., Hu, X., Luo, Y., Zheng, S., & Wu, Z. (2024). Distillers’ Grains Peptides Scavenge Free Radicals and Influence Volatile Compounds of Chi-Aroma Baijiu. Applied Sciences, 14(20), 9326. https://doi.org/10.3390/app14209326