Plasma, Urinary, Erythrocyte, and Platelet Concentrations of Manganese and Molybdenum in Football Players: Differences between Sexes and during the Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Menstrual Cycle
2.4. Nutritional Intake
2.5. Sample Collection
2.6. Physical Fitness
2.7. Mn and Mo Determination
2.8. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heffernan, S.M.; Horner, K.; De Vito, G.; Conway, G.E. The role of mineral and trace element supplementation in exercise and athletic performance: A systematic review. Nutrients 2019, 11, 696. [Google Scholar] [CrossRef]
- Volpe, S.L. Micronutrient requirements for athletes. Clin. Sports Med. 2007, 26, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Speich, M.; Pineau, A.; Ballereau, F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin. Chim. Acta 2001, 312, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in health and disease. Interrelat. Between Essent. Met. Ions Hum. Dis. 2013, 13, 199–227. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Erikson, K.M.; Aschner, M. Manganese neurotoxicity and glutamate-GABA interaction. Neurochem. Int. 2003, 43, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, M.R.; Wuytack, F.; Mata, A.M. High levels of Mn2+ inhibit secretory pathway Ca2+/Mn2+-ATP ase (SPCA) activity and cause Golgi fragmentation in neurons and glia. J. Neurochem. 2012, 123, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.L.; Quindry, J.C.; French, J.P.; Staib, J.; Hughes, J.; Mehta, J.L.; Powers, S.K. MnSOD antisense treatment and exercise-induced protection against arrhythmias. Free Radic. Biol. Med. 2004, 37, 1360–1368. [Google Scholar] [CrossRef]
- Abella, A.; Clerc, D.; Chalas, J.; Baret, A.; Leluc, R.; Lindenbaum, A. Concentrations of Superoxide Dismutase (Copper and Manganese), Catalase and Glutathione Peroxidase in Red Cells, Platelets and Plasma in Patients with Rheumatoid Polyarthritis. Annales de Biologie Clinique; Europe PMC: London, UK, 1987; Volume 45, p. 152. [Google Scholar]
- Baly, D.L.; Keen, C.L.; Hurley, L.S. Effects of manganese deficiency on pyruvate carboxylase and phosphoenolpyruvate carboxykinase activity and carbohydrate homeostasis in adult rats. Biol. Trace Elem. Res. 1986, 11, 201–212. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem.-Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef]
- Oskarsson, A.; Kippler, M. Molybdenum—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67. [Google Scholar] [CrossRef]
- Novotny, J.A.; Peterson, C.A. Molybdenum. Adv. Nutr. 2018, 9, 272–273. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Llerena, F.; Grijota, F.J.; Pérez-Quintero, M.; Bartolomé, I.; Alves, J.; Robles, M.C.; Muñoz, D. Serum concentration of cobalt, molybdenum and zinc in aerobic, anaerobic and aerobic-anaerobic sportsmen. J. Int. Soc. Sports Nutr. 2018, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A. Molybdenum nutriture in humans. J. Evid.-Based Complement. Altern. Med. 2011, 16, 164–168. [Google Scholar] [CrossRef]
- Vahter, M.; Åkesson, A.; Lidén, C.; Ceccatelli, S.; Berglund, M. Gender differences in the disposition and toxicity of metals. Env. Res 2007, 104, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Flaws, J.A. Chemicals and menopause: Effects on age at menopause and on health status in the postmenopausal period. J. Women’s Health 1999, 8, 227–234. [Google Scholar] [CrossRef]
- Maynar, M.; Bartolomé, I.; Alves, J.; Barrientos, G.; Grijota, F.; Robles, M.; Munõz, D. Influence of a 6-month physical training program on serum and urinary concentrations of trace metals in middle distance elite runners. J. Int. Soc. Sports Nutr. 2019, 16, 53. [Google Scholar] [CrossRef]
- Muñoz, D.; Maynar, M.; Barrientos, G.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Robles, M.C. Effect of an acute exercise until exhaustion on the serum and urinary concentrations of cobalt, copper, and manganese among well-trained athletes. Biol. Trace Elem. Res. 2019, 189, 387–394. [Google Scholar] [CrossRef]
- Maynar, M.; Grijota, F.; Siquier-Coll, J.; Bartolome, I.; Robles, M.; Muñoz, D. Erythrocyte concentrations of chromium, copper, manganese, molybdenum, selenium and zinc in subjects with different physical training levels. J. Int. Soc. Sports Nutr. 2020, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Toro-Román, V.; Robles-Gil, M.C.; Muñoz, D.; Bartolomé, I.; Siquier-Coll, J.; Maynar-Mariño, M. Extracellular and Intracellular Concentrations of Molybdenum and Zinc in Soccer Players: Sex Differences. Biology 2022, 11, 1710. [Google Scholar] [CrossRef]
- Maynar, M.; Muñoz, D.; Alves, J.; Barrientos, G.; Grijota, F.J.; Robles, M.C.; Llerena, F. Influence of an acute exercise until exhaustion on serum and urinary concentrations of molybdenum, selenium, and zinc in athletes. Biol. Trace Elem. Res. 2018, 186, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Grijota, F.J.; Toro-Román, V.; Siquier-Coll, J.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Total Iron Concentrations in Different Biological Matrices—Influence of Physical Training. Nutrients 2022, 14, 3549. [Google Scholar] [CrossRef] [PubMed]
- Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Copper concentration in erythrocytes, platelets, plasma, serum and urine: Influence of physical training. J. Int. Soc. Sports Nutr. 2021, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Deuster, P.A.; Dolev, E.; Bernier, L.L.; Trostmann, U.H. Magnesium and zinc status during the menstrual cycle. Am. J. Obstet. Gynecol. 1987, 157, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Michos, C.; Kalfakakou, V.; Karkabounas, S.; Kiortsis, D.; Evangelou, A. Changes in copper and zinc plasma concentrations during the normal menstrual cycle in women. Gynecol. Endocrinol. 2010, 26, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Balas, A.R. Efectos de las Fases del Ciclo Menstrual Sobre la Condición Física, Parámetros Fisiológicos y Psicológicos en Mujeres Jóvenes Moderadamente Entrenadas. Universidad de Extremadura: Badajoz, Spain, 2014. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composicion de Alimentos: Guia de Prácticas; Pirámide: Madrid, Spain, 2016; ISBN 978-84-368-3623-3. [Google Scholar]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar]
- Robles-Gil, M.C.; Toro-Román, V.; Maynar-Mariño, M.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J. Aluminum Concentrations in Male and Female Football Players during the Season. Toxics 2023, 11, 920. [Google Scholar] [CrossRef]
- Toro-Román, V.; Muñoz, D.; Maynar-Mariño, M.; Clemente-Gil, S.; Robles-Gil, M.C. Sex Differences in Copper Concentrations during a Sports Season in Soccer Players. Nutrients 2023, 15, 495. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. + Sci. Sports+ Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.M.; Brantsaeter, A.L.; Borch-Iohnsen, B.; Ellingsen, D.G.; Alexander, J.; Thomassen, Y.; Stigum, H.; Ydersbond, T.A. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study. Environ. Res 2010, 110, 497–504. [Google Scholar] [CrossRef]
- Mendel, R.R. Metabolism of Molybdenum. In Metallomics and the Cell; Banci, L., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 503–528. [Google Scholar]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001; Volume 11. [Google Scholar]
- Mariño, M.M.; Grijota, F.J.; Bartolomé, I.; Siquier-Coll, J.; Román, V.T.; Muñoz, D. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J. Int. Soc. Sports Nutr. 2020, 17, 8. [Google Scholar] [CrossRef]
- Heitland, P.; Köster, H.D. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP–MS. J. Trace Elem. Med. Biol. 2006, 20, 253–262. [Google Scholar] [PubMed]
- Heitland, P.; Köster, H.D. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Llerena, F.; Bartolomé, I.; Alves, J.; Robles, M.-C.; Grijota, F.-J.; Muñoz, D. Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J. Int. Soc. Sports Nutr. 2018, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Hoverson, B.S.; Gallagher, S.K.; Bolonchuk, W.W. Physical training and copper, iron, and zinc status of swimmers. Am. J. Clin. Nutr. 1990, 51, 1093–1099. [Google Scholar]
- Marklund, S. Superoxide dismutase in human tissues, cells, and extracellular fluid. Clin. Implic. Free Radic. Aging Degener. Dis. 1986, 74, 509–526. [Google Scholar]
- Finley, J.W.; Johnson, P.E.; Johnson, L. Sex affects manganese absorption and retention by humans from a diet adequate in manganese. Am. J. Clin. Nutr. 1994, 60, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, A.; Cheng, N.; Huang, W.; Huang, P.; Liu, N.; Bai, Y. Sex-specific associations of blood and urinary manganese levels with glucose levels, insulin resistance and kidney function in US adults: National health and nutrition examination survey 2011–2016. Chemosphere 2020, 258, 126940. [Google Scholar] [PubMed]
- Baj, J.; Flieger, W.; Barbachowska, A.; Kowalska, B.; Flieger, M.; Forma, A.; Teresiński, G.; Portincasa, P.; Buszewicz, G.; Radzikowska-Büchner, E.; et al. Consequences of Disturbing Manganese Homeostasis. Int. J. Mol. Sci. 2023, 24, 14959. [Google Scholar] [CrossRef]
- Oulhote, Y.; Mergler, D.; Bouchard, M.F. Sex-and age-differences in blood manganese levels in the US general population: National health and nutrition examination survey 2011–2012. Environ. Health 2014, 13, 87. [Google Scholar] [CrossRef]
- Baldwin, M.; Mergler, D.; Larribe, F.; Bélanger, S.; Tardif, R.; Bilodeau, L.; Hudnell, K. Bioindicator and exposure data for a population based study of manganese. Neurotoxicology 1999, 20, 343–353. [Google Scholar]
- Kim, Y.; Lee, B.-K. Iron deficiency increases blood manganese level in the Korean general population according to KNHANES 2008. Neurotoxicology 2011, 32, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Driskell, J.A.; Wolinsky, I. Sports Nutrition: Vitamins and Trace Elements; CRC Press: Boca Raton, FL, USA, 2005; ISBN 10:0-8493-3022-X. [Google Scholar]
- Otag, A.; Hazar, M.; Otag, I.; Gürkan, A.C.; Okan, İ. Responses of trace elements to aerobic maximal exercise in elite sportsmen. Glob. J. Health Sci. 2014, 6, 90–96. [Google Scholar] [PubMed]
- Berger, C.E.; Kröner, A.; Kluger, R.; Baron, R.; Steffan, I.; Engel, A. Effects of marathon running on the trace minerals chromium, cobalt, nickel, and molybdenum. J. Trace Elem. Exp. Med. Off. Publ. Int. Soc. Trace Elem. Res. Hum. 2002, 15, 201–209. [Google Scholar]
- Huang, C.-H.; Wang, C.-W.; Chen, H.-C.; Tu, H.-P.; Chen, S.-C.; Hung, C.-H.; Kuo, C.-H. Gender difference in the associations among heavy metals with red blood cell hemogram. Int. J. Environ. Res. Public Health 2021, 19, 189. [Google Scholar] [CrossRef]
- Díaz Martínez, A.E.; Alcaide Martín, M.J.; González-Gross, M. Basal values of biochemical and hematological parameters in elite athletes. Int. J. Environ. Res. Public Health 2022, 19, 3059. [Google Scholar] [CrossRef] [PubMed]
- Pradas, F.; García-Giménez, A.; Toro-Román, V.; Sánchez-Alcaraz, B.J.; Ochiana, N.; Castellar, C. Effect of a padel match on biochemical and haematological parameters in professional players with regard to gender-related differences. Sustainability 2020, 12, 8633. [Google Scholar] [CrossRef]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar]
Matrix | L. D. Mn 1 (µg/L) | L. Q. Mn 2 (µg/L) | L. D. Mo 3 (µg/L) | L. Q. Mo 4 (µg/L) |
---|---|---|---|---|
Plasma | 0.001 | 0.01 | 0.018 | 0.18 |
Urine | 0.005 | 0.05 | 0.002 | 0.02 |
Erythrocytes | 0.002 | 0.02 | 0.004 | 0.04 |
Platelets | 0.006 | 0.06 | 0.0016 | 0.02 |
Men’s Soccer Players | Women’s Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
SJ (cm) | 1st assessment | 50.52 ± 6.48 | 35.65 ± 5.82 | <0.001 | 0.515 | 0.602 |
2nd assessment | 49.73 ± 4.21 | 37.08 ± 5.14 | ||||
3rd assessment | 50.90 ± 6.2 | 38.00 ± 5.49 | ||||
CMJ (cm) | 1st assessment | 56.94 ± 6.39 | 40.21 ± 7.46 | <0.001 | 0.571 | 0.717 |
2nd assessment | 55.34 ± 4.72 | 39.70 ± 4.18 | ||||
3rd assessment | 56.05 ± 6.39 | 41.45 ± 5.80 | ||||
Speed (km/h) | 1st assessment | 19.17 ± 1.72 | 15.73 ± 1.16 | <0.001 | 0.289 | 0.315 |
2nd assessment | 19.22 ± 1.44 | 15.20 ± 1.10 | ||||
3rd assessment | 19.15 ± 1.98 | 14.91 ± 1.37 | ||||
VCO2max (L/min) | 1st assessment | 4.05 ± 0.36 | 2.68 ± 0.44 | <0.001 | 0.377 | 0.710 |
2nd assessment | 3.85 ± 0.80 | 2.4 ± 0.31 | ||||
3rd assessment | 53.30 ± 5.11 | 41.06 ± 4.51 | ||||
VO2max (mL/min/kg) | 1st assessment | 52.21 ± 2.91 | 39.72 ± 6.22 | <0.001 | 0.032 | 0.268 |
2nd assessment | 54.79 ± 3.70 * | 42.32 ± 4.19 * | ||||
3rd assessment | 53.30 ± 5.11 | 41.06 ± 4.51 |
Men’s Soccer Players | Women’s Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Energy (Kcal) | 1st assessment | 1796.0 ± 420.0 | 1578.1 ± 316.2 | 0.038 | 0.497 | 0.317 |
2nd assessment | 1932.2 ± 312.5 | 1681.5 ± 427.3 | ||||
3rd assessment | 1882.7 ± 358.6 | 1697.3 ± 386.1 | ||||
Proteins (g) | 1st assessment | 106.1 ± 25.5 | 90.4 ± 21.6 | 0.047 | 0.469 | 0.218 |
2nd assessment | 115.5 ± 23.4 | 96.2 ± 18.3 | ||||
3rd assessment | 108.9 ± 24.8 | 92.6 ± 20.4 | ||||
Proteins (g/Kg/day) | 1st assessment | 1.50 ± 0.39 | 1.27 ± 0.31 | 0.033 | 0.211 | 0.345 |
2nd assessment | 1.63 ± 0.34 | 1.36 ± 0.32 | ||||
3rd assessment | 1.55 ± 0.42 | 1.30 ± 0.30 | ||||
Lipids (g) | 1st assessment | 54.8 ± 19.1 | 48.3 ± 12.3 | 0.116 | 0.241 | 0.471 |
2nd assessment | 64.1 ± 15.4 | 55.6 ± 15.3 | ||||
3rd assessment | 58.6 ± 17.4 | 60.3 ± 20.6 | ||||
Lipids (g/Kg/day) | 1st assessment | 0.77 ± 0.29 | 0.71 ± 0.18 | 0.061 | 0.305 | 0.561 |
2nd assessment | 0.92 ± 0.21 | 0.76 ± 0.22 | ||||
3rd assessment | 0.83 ± 0.24 | 0.81 ± 0.25 | ||||
Carbohydrates (g) | 1st assessment | 231.0 ± 69.1 | 206.1 ± 81.3 | 0.471 | 0.856 | 0.683 |
2nd assessment | 235.8 ± 60.3 | 241.5 ± 56.1 | ||||
3rd assessment | 242.0 ± 57.0 | 235.8 ± 61.7 | ||||
Carbohydrates (g/Kg/day) | 1st assessment | 3.28 ± 1.09 | 3.03 ± 0.99 | 0.236 | 0.471 | 0.438 |
2nd assessment | 3.35 ± 0.95 | 3.48 ± 1.01 | ||||
3rd assessment | 3.45 ± 0.97 | 3.30 ± 1.11 | ||||
Mn (mg) | 1st assessment | 2.5 ± 1.1 | 1.9 ± 0.6 | 0.258 | 0.732 | 0.487 |
2nd assessment | 2.7 ± 1.3 | 2.2 ± 0.5 | ||||
3rd assessment | 2.7 ± 1.6 | 2.1 ± 0.4 | ||||
Mo (µg) | 1st assessment | 240.9 ± 99.1 | 201.5 ± 67.2 | 0.175 | 0.905 | 0.618 |
2nd assessment | 246.8 ± 76.0 | 214.7 ± 53.1 | ||||
3rd assessment | 253.8 ± 97.7 | 241.7 ± 87.5 |
Men’s Soccer Players | Women’s Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Erythrocytes (millions) | 1st assessment | 4.92 ± 0.36 | 4.37 ± 0.22 | <0.001 | 0.031 | 0.063 |
2nd assessment | 4.83 ± 0.32 ** | 4.19 ± 0.27 ** | ||||
3rd assessment | 4.99 ± 0.29 ++ | 4.35 ± 0.27 ++ | ||||
Platelets (thousands) | 1st assessment | 204.50 ± 57.65 | 196.00 ± 38.01 | 0.274 | 0.542 | 0.222 |
2nd assessment | 196.60 ± 39.79 | 219.08 ± 34.19 | ||||
3rd assessment | 195.13 ± 37.82 | 204.39 ± 31.52 |
Men’s Soccer Players | Women’s Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Mn Plasma (µg/L) | 1st assessment | 3.05 ± 1.48 | 0.94 ± 0.43 | <0.001 # | 0.182 $ | 0.061 |
2nd assessment | 2.00 ± 0.30 | 1.32 ± 0.28 | ||||
3rd assessment | 1.69 ± 0.55 | 2.05 ± 0.49 | ||||
Mn Urine (µg/L) | 1st assessment | 0.228 ± 0.196 | 0.088 ± 0.185 | 0.005 # | <0.001 # | 0.055 $ |
2nd assessment | 0.565 ± 0.102 ** | 0.381 ± 0.172 ** | ||||
3rd assessment | 0.421 ± 0.197 ++ | 0.433 ± 0.261 ++ | ||||
Mn Erythrocyte absolute (µg/L) | 1st assessment | 40.40 ± 12.60 | 65.45 ± 24.78 | 0.002 # | 0.007 # | 0.150 |
2nd assessment | 50.95 ± 7.52 ^^ | 54.90 ± 10.14 ^^ | ||||
3rd assessment | 44.56 ± 5.22 ++ | 47.01 ± 5.76 ++ | ||||
Mn Erythrocyte relative (pg/cell-6) | 1st assessment | 8.60 ± 2.57 | 15.46 ± 5.39 | <0.001 # | 0.019 $ | 0.079 $ |
2nd assessment | 10.99 ± 1.59 | 13.15 ± 2.21 | ||||
3rd assessment | 9.27 ± 1.16 ++ | 12.02 ± 1.34 ++ | ||||
Mn platelets absolute (µg/L) | 1st assessment | 10.01 ± 4.26 | 15.25 ± 13.98 | 0.245 | 0.037 # | 0.079 # |
2nd assessment | 12.37 ± 3.37 | 13.20 ± 3.47 | ||||
3rd assessment | 13.21 ± 2.48 ++ | 12.41 ± 4.76 ++ | ||||
Mn platelets relative (pg/cell-3) | 1st assessment | 0.071 ± 0.025 | 0.079 ± 0.059 | 0.256 | <0.001 # | 0.132 |
2nd assessment | 0.065 ± 0.022 ** | 0.059 ± 0.012 ** | ||||
3rd assessment | 0.071 ± 0.031 | 0.54 ± 0.022 |
Men’s Soccer Players | Women’s Soccer Players | Sex Effect | Time Effect | Sex × Time | ||
---|---|---|---|---|---|---|
Mo Plasma (µg/L) | 1st assessment | 2.07 ± 0.59 | 1.44 ± 0.71 | <0.001 # | <0.001 # | 0.216 |
2nd assessment | 2.67 ± 0.75 ** | 1.93 ± 0.45 ** | ||||
3rd assessment | 2.59 ± 0.79 ++ | 2.39 ± 0.49 ++ | ||||
Mo Urine (µg/L) | 1st assessment | 53.98 ± 40.77 | 57.55 ± 46.16 | 0.066 # | <0.001 # | 0.057 $ |
2nd assessment | 67.16 ± 37.14 ^^ | 34.33 ± 24.88 ^^ | ||||
3rd assessment | 24.71 ± 16.63 ++ | 19.23 ± 13.80 ++ | ||||
Mo Erythrocyte absolute (µg/L) | 1st assessment | 19.87 ± 6.15 | 30.97 ± 33.61 | 0.730 | 0.003 # | 0.088 $ |
2nd assessment | 42.45 ± 37.61 ** | 44.37 ± 48.36 ** | ||||
3rd assessment | 26.73 ± 20.11 ++ | 22.85 ± 9.15 ++ | ||||
Mo Erythrocyte relative (pg/cell-6) | 1st assessment | 2.66 ± 1.01 | 3.50 ± 5.38 | 0.574 | 0.002 # | 0.121 |
2nd assessment | 8.77 ± 7.99 ** | 10.26 ± 10.59 ** | ||||
3rd assessment | 5.60 ± 3.98 ^^ | 4.58 ± 1.68 ^^ | ||||
Mo platelets absolute (µg/L) | 1st assessment | 7.51 ± 2.51 | 8.71 ± 4.18 | 0.346 | 0.041 # | 0.217 |
2nd assessment | 6.94 ± 2.98 ^^ | 8.15 ± 5.32 ^^ | ||||
3rd assessment | 3.88 ± 1.53 ++ | 4.51 ± 1.42 ++ | ||||
Mo platelets relative (pg/cell-3) | 1st assessment | 0.040 ± 0.014 | 0.042 ± 0.017 | 0.991 | <0.001 # | 0.996 |
2nd assessment | 0.032 ± 0.015 ^^ | 0.037 ± 0.027 ^^ | ||||
3rd assessment | 0.024 ± 0.021 ++ | 0.028 ± 0.005 ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-Román, V.; Grijota, F.J.; Maynar-Mariño, M.; Campos, A.; Martínez-Sánchez, A.; Robles-Gil, M.C. Plasma, Urinary, Erythrocyte, and Platelet Concentrations of Manganese and Molybdenum in Football Players: Differences between Sexes and during the Season. Appl. Sci. 2024, 14, 9370. https://doi.org/10.3390/app14209370
Toro-Román V, Grijota FJ, Maynar-Mariño M, Campos A, Martínez-Sánchez A, Robles-Gil MC. Plasma, Urinary, Erythrocyte, and Platelet Concentrations of Manganese and Molybdenum in Football Players: Differences between Sexes and during the Season. Applied Sciences. 2024; 14(20):9370. https://doi.org/10.3390/app14209370
Chicago/Turabian StyleToro-Román, Victor, Fco Javier Grijota, Marcos Maynar-Mariño, Amalia Campos, Almudena Martínez-Sánchez, and María C. Robles-Gil. 2024. "Plasma, Urinary, Erythrocyte, and Platelet Concentrations of Manganese and Molybdenum in Football Players: Differences between Sexes and during the Season" Applied Sciences 14, no. 20: 9370. https://doi.org/10.3390/app14209370
APA StyleToro-Román, V., Grijota, F. J., Maynar-Mariño, M., Campos, A., Martínez-Sánchez, A., & Robles-Gil, M. C. (2024). Plasma, Urinary, Erythrocyte, and Platelet Concentrations of Manganese and Molybdenum in Football Players: Differences between Sexes and during the Season. Applied Sciences, 14(20), 9370. https://doi.org/10.3390/app14209370