Contributions of DNA Sequencing Technologies to the Integrative Monitoring of Karstic Caves
Abstract
:1. Introduction
2. Cultivation Methods, the First Assessments of Cave Microbial Diversity
3. Molecular Cloning, the First Culture-Independent Approach to Investigate the Microbial Ecology of Caves
4. NGS Taxonomic Assessment of Cave Microorganisms by Metabarcoding
4.1. Metabarcoding-Based Knowledge of Caves
4.2. Workflow, Pitfalls, and Care for the Metabarcoding Approach
5. Taxonomic and Functional Assessment of Cave Microorganisms by Metagenomics
5.1. Cave Metagenomics Tells Us Who Is There
5.2. Cave Metagenomics Tells Us What They Are Capable of Doing
5.3. Workflow, Pitfalls, and Care for the Metagenomic Approach
5.4. Comparison between Metabarcoding and Metagenomic Approaches in Cave Ecosystems
6. Contribution of NGS Assessments of Microorganisms to Cave Integrative Studies
7. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engel, A.S. Microbial diversity of cave ecosystems. In Geomicrobiology: Molecular and Environmental Perspective; Barton, L.L., Mandl, M., Loy, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 219–238. ISBN 978-90-481-9204-5. [Google Scholar]
- Lian, B.; Yuan, D.; Liu, Z. Effect of microbes on karstification in karst ecosystems. Chin. Sci. Bull. 2011, 56, 3743–3747. [Google Scholar] [CrossRef]
- De Waele, J.; D’Angeli, I.M.; Audra, P.; Plan, L.; Palmer, A.N. Sulfuric acid caves of the world: A review. Earth-Sci. Rev. 2024, 250, 104693. [Google Scholar] [CrossRef]
- Tomczyk-Żak, K.; Zielenkiewicz, U. Microbial diversity in Caves. Geomicrobiol. J. 2016, 33, 20–38. [Google Scholar] [CrossRef]
- Barton, H.A.; Jurado, V. What’s up down there? Microbial diversity in caves. Microbe 2007, 2, 132–138. [Google Scholar]
- Jurado, V.; Northup, D.E.; Saiz-Jimenez, C. Microbial roles in caves. Front. Microbiol. 2024, 15, 1411535. [Google Scholar] [CrossRef]
- Mammola, S.; Meierhofer, M.B.; Borges, P.A.V.; Colado, R.; Culver, D.C.; Deharveng, L.; Delić, T.; Di Lorenzo, T.; Dražina, T.; Ferreira, R.L.; et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev. 2022, 97, 1476–1510. [Google Scholar] [CrossRef]
- Bastian, F.; Jurado, V.; Nováková, A.; Alabouvette, C.; Saiz-Jimenez, C. The microbiology of Lascaux Cave. Microbiol. Read. Engl. 2010, 156, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Cuezva, S.; Fernandez-Cortes, A.; Porca, E.; Pašić, L.; Jurado, V.; Hernandez-Marine, M.; Serrano-Ortiz, P.; Hermosin, B.; Cañaveras, J.C.; Sanchez-Moral, S. The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol. Ecol. 2012, 81, 281–290. [Google Scholar] [CrossRef]
- Gabriel, C.R.; Northup, D.E. Microbial ecology: Caves as an extreme habitat. In Cave Microbiomes: A Novel Resource for Drug Discovery; Cheeptham, N., Ed.; Springer: New York, NY, USA, 2013; Volume 1, pp. 85–108. ISBN 978-1-4614-5205-8. [Google Scholar]
- Portillo, M.C.; Gonzalez, J.M.; Saiz-Jimenez, C. Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. J. Appl. Microbiol. 2008, 104, 681–691. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Nováková, A.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. Two new species of the genus Ochroconis, O. lascauxensis and O. anomala isolated from black stains in Lascaux Cave, France. Fungal Biol. 2012, 116, 574–589. [Google Scholar] [CrossRef]
- Ghosh, S.; Kuisiene, N.; Cheeptham, N. The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochem. Pharmacol. 2017, 134, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, A. Saving a fragile legacy. Biotechnology and microbiology are increasingly used to preserve and restore the world’s cultural heritage. EMBO Rep. 2006, 7, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Ogasawara, A.; Itoh, T.; Sakai, H.D.; Shimizu, M.; Yuki, M.; Kaneko, M.; Takashina, T.; Ohkuma, M. Nanobdella aerobiophila gen. nov., sp. nov., a thermoacidophilic, obligate ectosymbiotic archaeon, and proposal of Nanobdellaceae fam. nov., Nanobdellales ord. nov. and Nanobdellia class. nov. Int. J. Syst. Evol. Microbiol. 2022, 72, 005489. [Google Scholar] [CrossRef] [PubMed]
- Wade, W. Unculturable bacteria—The uncharacterized organisms that cause oral infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Shouche, Y.; Jangid, K.; Kostka, J.E. Microbial cultivation and the role of microbial resource centers in the omics era. Appl. Microbiol. Biotechnol. 2013, 97, 51–62. [Google Scholar] [CrossRef]
- Achtman, M.; Wagner, M. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 2008, 6, 431–440. [Google Scholar] [CrossRef]
- Ikner, L.A.; Toomey, R.S.; Nolan, G.; Neilson, J.W.; Pryor, B.M.; Maier, R.M. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb. Ecol. 2007, 53, 30–42. [Google Scholar] [CrossRef]
- van der Linde, K.; Lim, B.T.; Rondeel, J.M.M.; Antonissen, L.P.M.T.; de Jong, G.M.T. Improved bacteriological surveillance of haemodialysis fluids: A comparison between Tryptic soy agar and Reasoner’s 2A media. Nephrol. Dial. Transplant. 1999, 14, 2433–2437. [Google Scholar] [CrossRef]
- Herzog Velikonja, B.; Tkavc, R.; Pašić, L. Diversity of cultivable bacteria involved in the formation of macroscopic microbial colonies (cave silver) on the walls of a cave in Slovenia. Int. J. Speleol. 2014, 43, 45–56. [Google Scholar] [CrossRef]
- Pašić, L.; Kovče, B.; Sket, B.; Herzog-Velikonja, B. Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. FEMS Microbiol. Ecol. 2010, 71, 50–60. [Google Scholar] [CrossRef]
- Brar, A.; Bergmann, D. Culture-based analysis of ‘Cave Silver’ biofilms on Rocks in the former Homestake mine in South Dakota, USA. Int. J. Speleol. 2019, 48, 145–154. [Google Scholar] [CrossRef]
- Griffith, G.W.; Easton, G.L.; Detheridge, A.; Roderick, K.; Edwards, A.; Worgan, H.J.; Nicholson, J.; Perkins, W.T. Copper deficiency in potato dextrose agar causes reduced pigmentation in cultures of various fungi. FEMS Microbiol. Lett. 2007, 276, 165–171. [Google Scholar] [CrossRef]
- Ogórek, R.; Višňovská, Z.; Tančinová, D. Mycobiota of underground habitats: Case study of Harmanecká Cave in Slovakia. Microb. Ecol. 2016, 71, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Bontemps, Z.; Alonso, L.; Pommier, T.; Hugoni, M.; Moënne-Loccoz, Y. Microbial ecology of tourist Paleolithic caves. Sci. Total Environ. 2022, 816, 151492. [Google Scholar] [CrossRef]
- Gosse, J.T.; Ghosh, S.; Sproule, A.; Overy, D.; Cheeptham, N.; Boddy, C.N. Whole genome sequencing and metabolomic study of cave Streptomyces isolates ICC1 and ICC4. Front. Microbiol. 2019, 10, 1020. [Google Scholar] [CrossRef]
- Bhullar, K.; Waglechner, N.; Pawlowski, A.; Koteva, K.; Banks, E.D.; Johnston, M.D.; Barton, H.A.; Wright, G.D. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 2012, 7, e34953. [Google Scholar] [CrossRef] [PubMed]
- Turrini, P.; Tescari, M.; Visaggio, D.; Pirolo, M.; Lugli, G.A.; Ventura, M.; Frangipani, E.; Visca, P. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. Microbiol. Res. 2020, 241, 126584. [Google Scholar] [CrossRef] [PubMed]
- Martin-Pozas, T.; Fernandez-Cortes, A.; Cuezva, S.; Cañaveras, J.C.; Benavente, D.; Duarte, E.; Saiz-Jimenez, C.; Sanchez-Moral, S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). Sci. Total Environ. 2023, 897, 165218. [Google Scholar] [CrossRef] [PubMed]
- De Luca, D.; Caputo, P.; Perfetto, T.; Cennamo, P. Characterisation of environmental biofilms colonising wall paintings of the Fornelle Cave in the archaeological site of Cales. Int. J. Environ. Res. Public. Health 2021, 18, 8048. [Google Scholar] [CrossRef]
- Bollmann, A.; Lewis, K.; Epstein, S.S. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 2007, 73, 6386–6390. [Google Scholar] [CrossRef]
- Nichols, D.; Cahoon, N.; Trakhtenberg, E.M.; Pham, L.; Mehta, A.; Belanger, A.; Kanigan, T.; Lewis, K.; Epstein, S.S. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 2010, 76, 2445–2450. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.-C.; Raoult, D. Culturomics: Une méthode d’étude du microbiote humain. Méd./Sci. 2016, 32, 923–925. [Google Scholar] [CrossRef]
- Bender, K.E.; Glover, K.; Archey, A.; Barton, H.A. The impact of sample processing and media chemistry on the culturable diversity of bacteria isolated from a cave. Int. J. Speleol. 2020, 49, 209–220. [Google Scholar] [CrossRef]
- Cohen, S.N. DNA cloning: A personal view after 40 years. Proc. Natl. Acad. Sci. USA 2013, 110, 15521–15529. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Dovichi, N.J.; Zhang, J. How capillary electrophoresis sequenced the human genome. Angew. Chem. Int. Ed Engl. 2000, 39, 4463–4468. [Google Scholar] [CrossRef] [PubMed]
- Tringe, S.G.; Rubin, E.M. Metagenomics: DNA sequencing of environmental samples. Nat. Rev. Genet. 2005, 6, 805–814. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef]
- Martin-Laurent, F.; Philippot, L.; Hallet, S.; Chaussod, R.; Germon, J.C.; Soulas, G.; Catroux, G. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 2001, 67, 2354–2359. [Google Scholar] [CrossRef]
- Anderson, I.C.; Cairney, J.W.G. Diversity and ecology of soil fungal communities: Increased understanding through the application of molecular techniques. Environ. Microbiol. 2004, 6, 769–779. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Kunin, V.; Copeland, A.; Lapidus, A.; Mavromatis, K.; Hugenholtz, P. A bioinformatician’s guide to metagenomics. Microbiol. Mol. Biol. Rev. 2008, 72, 557–578. [Google Scholar] [CrossRef] [PubMed]
- Mayo Pérez, B.; Rachid, C.T.C.C.; Alegría, Á.; Leite, A.M.O.; Peixoto, R.S.; Delgado, S. Impact of next generation sequencing techniques in food microbiology. Curr. Genomics 2014, 15, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S. Methods for characterizing microbial communities in caves and karst: A review. In Microbial Life of Cave Systems; Summers Engel, A., Ed.; De Gruyter: Berlin, Germany, 2015; Chapter 2; pp. 23–46. ISBN 978-3-11-033988-8. [Google Scholar]
- Boers, S.A.; Jansen, R.; Hays, J.P. Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Angert, E.R.; Northup, D.E.; Reysenbach, A.-L.; Peek, A.S.; Goebel, B.M.; Pace, N.R. Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky. Am. Mineral. 1998, 83, 1583–1592. [Google Scholar] [CrossRef]
- Jurado, V.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. What can molecular microbiology tell us about Lascaux Cave? In Proceedings 15th International Congress of Speleology, Kerrville, TX, USA, 19–26 July 2009; International Union of Speleology: Kerrville, TX, USA, 2009; pp. 384–388. ISBN 978-1-879961-33-3. [Google Scholar]
- Bastian, F.; Alabouvette, C.; Jurado, V.; Saiz-Jimenez, C. Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Naturwissenschaften 2009, 96, 863–868. [Google Scholar] [CrossRef]
- Northup, D.E.; Barns, S.M.; Yu, L.E.; Spilde, M.N.; Schelble, R.T.; Dano, K.E.; Crossey, L.J.; Connolly, C.A.; Boston, P.J.; Natvig, D.O.; et al. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ. Microbiol. 2003, 5, 1071–1086. [Google Scholar] [CrossRef]
- Hose, L.; Palmer, A.; Palmer, M.; Northup, D.; Boston, P.; DuChene, H. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol. 2000, 169, 399–423. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 2012, 251364. [Google Scholar] [CrossRef]
- Yun, Y.; Xiang, X.; Wang, H.; Man, B.; Gong, L.; Liu, Q.; Dong, Q.; Wang, R. Five-year monitoring of bacterial communities in dripping water from the Heshang Cave in Central China: Implication for paleoclimate reconstruction and ecological functions. Geomicrobiol. J. 2015, 33, 1–11. [Google Scholar] [CrossRef]
- D’Auria, G.; Artacho, A.; Rojas, R.A.; Bautista, J.S.; Méndez, R.; Gamboa, M.T.; Gamboa, J.R.; Gómez-Cruz, R. Metagenomics of bacterial diversity in Villa Luz caves with sulfur water springs. Genes 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Hillmann, B.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Zhu, Q.; Gohl, D.M.; Beckman, K.B.; Knight, R.; Knights, D. Evaluating the information content of shallow shotgun metagenomics. mSystems 2018, 3, e00069-18. [Google Scholar] [CrossRef]
- Hershey, O.S.; Kallmeyer, J.; Wallace, A.; Barton, M.D.; Barton, H.A. High microbial diversity despite extremely low biomass in a deep karst aquifer. Front. Microbiol. 2018, 9, 2823. [Google Scholar] [CrossRef]
- Man, B.; Wang, H.; Yun, Y.; Xiang, X.; Wang, R.; Duan, Y.; Cheng, X. Diversity of fungal communities in Heshang Cave of Central China revealed by mycobiome-sequencing. Front. Microbiol. 2018, 9, 1400. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.D.; Elliott, E.T.; Paustian, K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol. Biochem. 1999, 31, 573–585. [Google Scholar] [CrossRef]
- Schimel, J.P.; Gulledge, J.M.; Clein-Curley, J.S.; Lindstrom, J.E.; Braddock, J.F. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol. Biochem. 1999, 31, 831–838. [Google Scholar] [CrossRef]
- Zhu, H.-Z.; Zhang, Z.-F.; Zhou, N.; Jiang, C.-Y.; Wang, B.-J.; Cai, L.; Liu, S.-J. Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Front. Microbiol. 2019, 10, 1726. [Google Scholar] [CrossRef]
- Engel, A.S.; Northup, D.E. Caves and karst as model systems for advancing the microbial sciences. In Frontiers of Karst Research; Martin, J.B., White, W.B., Eds.; Karst Waters Institute: Leesburg, VA, USA, 2008; Special Publication 13; pp. 37–48. ISBN 978-0-9789976-2-5. [Google Scholar]
- Cuezva, S.; Sanchez-Moral, S.; Saiz-Jimenez, C.; Cañaveras, J.C. Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int. J. Speleol. 2009, 38, 83–92. [Google Scholar] [CrossRef]
- Garcia-Anton, E.; Cuezva, S.; Jurado, V.; Porca, E.; Miller, A.Z.; Fernandez-Cortes, A.; Saiz-Jimenez, C.; Sanchez-Moral, S. Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environ. Sci. Pollut. Res. 2014, 21, 473–484. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Cai, L. Substrate and spatial variables are major determinants of fungal community in karst caves in Southwest China. J. Biogeogr. 2019, 46, 1504–1518. [Google Scholar] [CrossRef]
- Dupont, J.; Jacquet, C.; Dennetière, B.; Lacoste, S.; Bousta, F.; Orial, G.; Cruaud, C.; Couloux, A.; Roquebert, M.-F. Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 2007, 99, 526–533. [Google Scholar] [CrossRef]
- Ogórek, R.; Dyląg, M.; Kozak, B. Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles 2016, 20, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, X.; Ma, Y.; Mao, L.; Wu, F.; Ma, X.; An, L.; Feng, H. Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. Int. Biodeterior. Biodegrad. 2010, 64, 461–466. [Google Scholar] [CrossRef]
- Adetutu, E.M.; Thorpe, K.; Bourne, S.; Cao, X.; Shahsavari, E.; Kirby, G.; Ball, A.S. Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia 2011, 103, 959–968. [Google Scholar] [CrossRef]
- Lowenstam, H.A. Minerals formed by organisms. Science 1981, 211, 1126–1131. [Google Scholar] [CrossRef]
- Hamilton, W.A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis. Biofouling 2003, 19, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Taboroši, D. Biologically influenced carbonate speleothems. In Perspectives on Karst Geomorphology, Hydrology, and Geochemistry—A Tribute Volume to Derek C. Ford and William B. White; Harmon, R.S., Wicks, C.M., Eds.; Geological Society of America: Boulder, CO, USA, 2006; Special Paper 404; pp. 307–317. ISBN 978-0-8137-2404-1. [Google Scholar]
- Douglas, S.; Beveridge, T.J. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 1998, 26, 79–88. [Google Scholar] [CrossRef]
- Groth, I.; Vettermann, R.; Schuetze, B.; Schumann, P.; Saiz-Jimenez, C. Actinomycetes in karstic caves of northern Spain (Altamira and Tito Bustillo). J. Microbiol. Methods 1999, 36, 115–122. [Google Scholar] [CrossRef]
- Laiz, L.; Groth, I.; Gonzalez, I.; Saiz-Jimenez, C. Microbiological study of the dripping waters in Altamira Cave (Santillana Del Mar, Spain). J. Microbiol. Methods 1999, 36, 129–138. [Google Scholar] [CrossRef]
- Cañaveras, J.; Sanchez-Moral, S.; Soler, V.; Saiz-Jimenez, C. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 2001, 18, 223–240. [Google Scholar] [CrossRef]
- Barton, A.; Spear, J.R.; Norman, R.H. Microbial life in the underworld: Biogenicity in secondary mineral formations. Geomicrobiol. J. 2001, 18, 359–368. [Google Scholar] [CrossRef]
- Jones, B. Microbial activity in caves—A geological perspective. Geomicrobiol. J. 2001, 18, 345–357. [Google Scholar] [CrossRef]
- Dhami, N.K.; Mukherjee, A.; Watkin, E.L.J. Microbial diversity and mineralogical-mechanical properties of calcitic cave speleothems in natural and in vitro biomineralization conditions. Front. Microbiol. 2018, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Michail, G.; Karapetsi, L.; Madesis, P.; Reizopoulou, A.; Vagelas, I. Metataxonomic Analysis of Bacteria Entrapped in a Stalactite’s Core and Their Possible Environmental Origins. Microorganisms 2021, 9, 2411. [Google Scholar] [CrossRef] [PubMed]
- Vagelas, I.; Reizopoulou, A.; Exadactylos, A.; Madesis, P.; Karapetsi, L.; Michail, G. Stalactites Core Prospect as Environmental “Microbial Ark”: The Actinomycetota Diversity Paradigm, First Reported from a Greek Cave. Pol. J. Microbiol. 2023, 72, 155–168. [Google Scholar] [CrossRef]
- Jurado, V.; Porca, E.; Cuezva, S.; Fernandez-Cortes, A.; Sanchez-Moral, S.; Saiz-Jimenez, C. Fungal outbreak in a show cave. Sci. Total Environ. 2010, 408, 3632–3638. [Google Scholar] [CrossRef]
- Vanderwolf, K.; Malloch, D.; McAlpine, D.; Forbes, G. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 2013, 42, 77–96. [Google Scholar] [CrossRef]
- Thimm, T.; Hoffmann, A.; Borkott, H.; Munch, J.C.; Tebbe, C.C. The gut of the soil microarthropod Folsomia candida (Collembola) is a frequently changeable but selective habitat and a vector for microorganisms. Appl. Environ. Microbiol. 1998, 64, 2660–2669. [Google Scholar] [CrossRef]
- Scheu, S.; Simmerling, F. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia 2004, 139, 347–353. [Google Scholar] [CrossRef]
- Moissl-Eichinger, C.; Huber, H. Archaeal symbionts and parasites. Curr. Opin. Microbiol. 2011, 14, 364–370. [Google Scholar] [CrossRef]
- Serra-Cobo, J.; López-Roig, M.; Seguí, M.; Sánchez, L.P.; Nadal, J.; Borrás, M.; Lavenir, R.; Bourhy, H. Ecological factors associated with European bat Lyssavirus seroprevalence in Spanish bats. PLoS ONE 2013, 8, e64467. [Google Scholar] [CrossRef] [PubMed]
- Bernard, R.F.; Willcox, E.V.; Parise, K.L.; Foster, J.T.; McCracken, G.F. White-nose syndrome fungus, Pseudogymnoascus destructans, on bats captured emerging from caves during winter in the southeastern United States. BMC Zool. 2017, 2, 12. [Google Scholar] [CrossRef]
- Szentiványi, T.; Christe, P.; Glaizot, O. Bat flies and their microparasites: Current knowledge and distribution. Front. Vet. Sci. 2019, 6, 115. [Google Scholar] [CrossRef] [PubMed]
- Selvin, J.; Lanong, S.; Syiem, D.; De Mandal, S.; Kayang, H.; Kumar, N.S.; Kiran, G.S. Culture-dependent and metagenomic analysis of lesser horseshoe bats’ gut microbiome revealing unique bacterial diversity and signatures of potential human pathogens. Microb. Pathog. 2019, 137, 103675. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.; Pommier, T.; Kaufmann, B.; Dubost, A.; Chapulliot, D.; Doré, J.; Douady, C.J.; Moënne-Loccoz, Y. Anthropization level of Lascaux Cave microbiome shown by regional-scale comparisons of pristine and anthropized caves. Mol. Ecol. 2019, 28, 3383–3394. [Google Scholar] [CrossRef]
- Alonso, L.; Pommier, T.; Simon, L.; Maucourt, F.; Doré, J.; Dubost, A.; Trân Van, V.; Minard, G.; Valiente Moro, C.; Douady, C.J.; et al. Microbiome analysis in Lascaux Cave in relation to black stain alterations of rock surfaces and collembola. Environ. Microbiol. Rep. 2023, 15, 80–91. [Google Scholar] [CrossRef]
- Portillo, M.C.; Porca, E.; Cuezva, S.; Cañaveras, J.C.; Sanchez-Moral, S.; Gonzalez, J.M. Is the availability of different nutrients a critical factor for the impact of bacteria on subterraneous carbon budgets? Naturwissenschaften 2009, 96, 1035–1042. [Google Scholar] [CrossRef]
- Pfendler, S.; Karimi, B.; Maron, P.-A.; Ciadamidaro, L.; Valot, B.; Bousta, F.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. Biofilm biodiversity in French and Swiss show caves using the metabarcoding approach: First data. Sci. Total Environ. 2018, 615, 1207–1217. [Google Scholar] [CrossRef]
- Urzì, C.; De Leo, F.; Bruno, L.; Albertano, P. Microbial diversity in Paleolithic caves: A study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb. Ecol. 2010, 60, 116–129. [Google Scholar] [CrossRef]
- Bontemps, Z.; Prigent-Combaret, C.; Guillmot, A.; Hugoni, M.; Moënne-Loccoz, Y. Dark-zone alterations expand throughout Paleolithic Lascaux Cave despite spatial heterogeneity of the cave microbiome. Environ. Microbiome 2023, 18, 31. [Google Scholar] [CrossRef]
- De Leo, F.; Iero, A.; Zammit, G.; Urzì, C. Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int. J. Speleol. 2012, 41, 125–136. [Google Scholar] [CrossRef]
- Herrmann, M.; Rusznyák, A.; Akob, D.M.; Schulze, I.; Opitz, S.; Totsche, K.U.; Küsel, K. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl. Environ. Microbiol. 2015, 81, 2384–2394. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.; Creuzé-des-Châtelliers, C.; Trabac, T.; Dubost, A.; Moënne-Loccoz, Y.; Pommier, T. Rock substrate rather than black stain alterations drives microbial community structure in the passage of Lascaux Cave. Microbiome 2018, 6, 216. [Google Scholar] [CrossRef]
- Zhang, T.; Victor, T.R.; Rajkumar, S.S.; Li, X.; Okoniewski, J.C.; Hicks, A.C.; Davis, A.D.; Broussard, K.; LaDeau, S.L.; Chaturvedi, S.; et al. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of Fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) Destructans. PLoS ONE 2014, 9, e108714. [Google Scholar] [CrossRef]
- Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 2016, 469, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Sharpton, T.J. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci. 2014, 5, 209. [Google Scholar] [CrossRef]
- Wiseschart, A.; Mhuantong, W.; Tangphatsornruang, S.; Chantasingh, D.; Pootanakit, K. Shotgun metagenomic sequencing from Manao-Pee Cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol. 2019, 19, 144. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Zinger, L.; Nilsson, R.H.; Kennedy, P.G.; Yang, T.; Anslan, S.; Mikryukov, V. Best Practices in Metabarcoding of Fungi: From Experimental Design to Results. Mol. Ecol. 2022, 31, 2769–2795. [Google Scholar] [CrossRef]
- Zeng, Q.; An, S. Identifying the Biogeographic Patterns of Rare and Abundant Bacterial Communities Using Different Primer Sets on the Loess Plateau. Microorganisms 2021, 9, 139. [Google Scholar] [CrossRef]
- Gong, W.; Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 2019, 6, 219. [Google Scholar] [CrossRef]
- Tremblay, J.; Singh, K.; Fern, A.; Kirton, E.S.; He, S.; Woyke, T.; Lee, J.; Chen, F.; Dangl, J.L.; Tringe, S.G. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 2015, 6, 771. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Zhang, Y.; Zhang, W.; Pan, H.; Xu, J.; Huang, H.; Xiao, T.; Wu, L.-F. Diversity and characterization of multicellular magnetotactic prokaryotes from coral reef habitats of the Paracel Islands, South China Sea. Front. Microbiol. 2018, 9, 2135. [Google Scholar] [CrossRef] [PubMed]
- Prodan, A.; Tremaroli, V.; Brolin, H.; Zwinderman, A.H.; Nieuwdorp, M.; Levin, E. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE 2020, 15, e0227434. [Google Scholar] [CrossRef]
- Ortiz, M.; Legatzki, A.; Neilson, J.W.; Fryslie, B.; Nelson, W.M.; Wing, R.A.; Soderlund, C.A.; Pryor, B.M.; Maier, R.M. Making a living while starving in the dark: Metagenomic insights into the energy dynamics of a carbonate cave. ISME J. 2014, 8, 478–491. [Google Scholar] [CrossRef]
- Babalola, O.O.; Adedayo, A.A.; Akinola, S.A. High-throughput metagenomic assessment of Cango Cave microbiome—A South African limestone cave. Data Brief 2024, 54, 110381. [Google Scholar] [CrossRef]
- Sangwan, N.; Xia, F.; Gilbert, J.A. Recovering complete and draft population genomes from metagenome datasets. Microbiome 2016, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Ruby, J.G.; Bellare, P.; DeRisi, J.L. PRICE: Software for the targeted assembly of components of (Meta) genomic sequence data. G3 Genes Genomes Genet. 2013, 3, 865–880. [Google Scholar] [CrossRef]
- Wu, H.; Fang, Y.; Yu, J.; Zhang, Z. The quest for a unified view of bacterial land colonization. ISME J. 2014, 8, 1358–1369. [Google Scholar] [CrossRef]
- Ettwig, K.F.; Butler, M.K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.M.; Schreiber, F.; Dutilh, B.E.; Zedelius, J.; de Beer, D.; et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010, 464, 543–548. [Google Scholar] [CrossRef]
- Kumaresan, D.; Stephenson, J.; Doxey, A.C.; Bandukwala, H.; Brooks, E.; Hillebrand-Voiculescu, A.; Whiteley, A.S.; Murrell, J.C. Aerobic proteobacterial methylotrophs in Movile Cave: Genomic and metagenomic analyses. Microbiome 2018, 6, 1. [Google Scholar] [CrossRef]
- Tetu, S.G.; Breakwell, K.; Elbourne, L.D.H.; Holmes, A.J.; Gillings, M.R.; Paulsen, I.T. Life in the dark: Metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J. 2013, 7, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Buttigieg, P.L.; Hankeln, W.; Kostadinov, I.; Kottmann, R.; Yilmaz, P.; Duhaime, M.B.; Glöckner, F.O. Ecogenomic perspectives on domains of unknown function: Correlation-based exploration of marine metagenomes. PLoS ONE 2013, 8, e50869. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Hugenholtz, P.; Mavromatis, K.; Pukall, R.; Dalin, E.; Ivanova, N.N.; Kunin, V.; Goodwin, L.; Wu, M.; Tindall, B.J.; et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 2009, 462, 1056–1060. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.L.Z.; Lundberg, J.; Ivarsson, M.; Campos, P.; Nylander, J.A.A.; Sallstedt, T.; Dalen, L. Metagenomic analysis from the interior of a speleothem in Tjuv-Ante’s cave, northern Sweden. PLoS ONE 2016, 11, e0151577. [Google Scholar] [CrossRef]
- Araujo, M.; Rossi, F.; Bendia, A.; Callefo, F.; Sanchez, E.; Vasconcelos, A.; Galante, D.; Rodrigues, F. Shotgun metagenomics from Monte Cristo cave (Brazil) reveals microbial metabolic potential related to iron and manganese biogeochemical cycles. ARPHA Conf. Abstr. 2023, 6, e108139. [Google Scholar] [CrossRef]
- Samanta, B.; Sharma, S.; Budhwar, R. Metagenome analysis of speleothem microbiome from subterranean cave reveals insight into community structure, metabolic potential, and BGCs diversity. Curr. Microbiol. 2023, 80, 317. [Google Scholar] [CrossRef]
- Chiciudean, I.; Russo, G.; Bogdan, D.F.; Levei, E.A.; Faur, L.; Hillebrand-Voiculescu, A.; Moldovan, O.T.; Banciu, H.L. Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: First metagenomic approach on sediments. Environ. Microbiome 2022, 17, 44. [Google Scholar] [CrossRef]
- Wiseschart, A.; Mhuanthong, W.; Thongkam, P.; Tangphatsornruang, S.; Chantasingh, D. Bacterial diversity and phylogenetic analysis of type II polyketide synthase gene from Manao-Pee cave, Thailand. Geomicrobiol. J. 2018, 35, 518–527. [Google Scholar] [CrossRef]
- Renschler, C.; Doyle, M.; Thoms, M. Geomorphology and ecosystems: Challenges and keys for success in bridging disciplines. Geomorphology 2007, 89, 1–8. [Google Scholar] [CrossRef]
- Drew, J.; Henne, A. Conservation biology and traditional ecological knowledge: Integrating academic disciplines for better conservation practice. Ecol. Soc. 2006, 11, 34. [Google Scholar] [CrossRef]
- van Riper, C.; Powell, R.B.; Machlis, G.; van Wagtendonk, J.W.; van Riper, C.J.; von Ruschkowski, E.; Schwarzbach, S.E.; Galipeau, R.E. Using integrated research and interdisciplinary science: Potential benefits and challenges to managers of parks and protected areas. George Wright Forum 2012, 29, 216–226. [Google Scholar]
- Lacanette, D.; Large, D.; Ferrier, C.; Aujoulat, N.; Bastian, F.; Denis, A.; Jurado, V.; Kervazo, B.; Konik, S.; Lastennet, R.; et al. A laboratory cave for the study of wall degradation in rock art caves: An implementation in the Vézère area. J. Archaeol. Sci. 2013, 40, 894–903. [Google Scholar] [CrossRef]
- Lorblanchet, M.; Delpech, F.; Renault, P.; Andrieux, C. La grotte de Sainte-Eulalie à Espagnac (Lot). Gall. Préhistoire 1973, 16, 233–325. [Google Scholar] [CrossRef]
- Renault, P. Études récentes sur le karst de Niaux-Lombrive-Sabart (Ariège). Karstologia Rev. Karstol. Spéléologie Phys. 1983, 2, 17–22. [Google Scholar] [CrossRef]
- Martin-Pozas, T.; Fernandez-Cortes, A.; Cuezva, S.; Jurado, V.; Gonzalez-Pimentel, J.L.; Hermosin, B.; Ontañon, R.; Arias, P.; Cañaveras, J.C.; Sanchez-Moral, S.; et al. Microclimate, airborne particles, and microbiological monitoring protocol for conservation of rock-art caves: The case of the world-heritage site La Garma cave (Spain). J. Environ. Manage. 2024, 351, 119762. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Jimenez, C. Special issue on interdisciplinary researches for Cultural Heritage Conservation. Appl. Sci. 2023, 13, 1824. [Google Scholar] [CrossRef]
- Oliveira, C.; Gunderman, L.; Coles, C.; Lochmann, J.; Parks, M.; Ballard, E.; Glazko, G.; Rahmatallah, Y.; Tackett, A.; Thomas, D. 16S rRNA Gene-based metagenomic analysis of Ozark Cave Bacteria. Diversity 2017, 9, 31. [Google Scholar] [CrossRef]
- Vaughan, M.J.; Nelson, W.; Soderlund, C.; Maier, R.M.; Pryor, B.M. Assessing fungal community structure from mineral surfaces in Kartchner Caverns using multiplexed 454 pyrosequencing. Microb. Ecol. 2015, 70, 175–187. [Google Scholar] [CrossRef]
- Marques, E.L.S.; Silva, G.S.; Dias, J.C.T.; Gross, E.; Costa, M.S.; Rezende, R.P. Cave drip water-related samples as a natural environment for aromatic hydrocarbon-degrading Bacteria. Microorganisms 2019, 7, 33. [Google Scholar] [CrossRef]
- Sauro, F.; Cappelletti, M.; Ghezzi, D.; Columbu, A.; Hong, P.-Y.; Zowawi, H.M.; Carbone, C.; Piccini, L.; Vergara, F.; Zannoni, D.; et al. Microbial diversity and biosignatures of amorphous silica deposits in orthoquartzite caves. Sci. Rep. 2018, 8, 17569. [Google Scholar] [CrossRef] [PubMed]
- Kimble, J.C.; Winter, A.S.; Spilde, M.N.; Sinsabaugh, R.L.; Northup, D.E. A potential central role of Thaumarchaeota in N-cycling in a semi-arid environment, Fort Stanton Cave, Snowy River Passage, New Mexico, USA. FEMS Microbiol. Ecol. 2018, 94, fiy173. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Ramos, R. Current perspectives in the precolonial archaeology of Puerto Rico. In Oxford Research Encyclopedia of Latin American History; Oxford University Press: Oxford, UK, 2019; ISBN 978-0-19-936643-9. [Google Scholar]
- De Mandal, S.; Chatterjee, R.; Kumar, N.S. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol. 2017, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- De Mandal, S.; Panda, A.K.; Lalnunmawii, E.; Bisht, S.S.; Kumar, N.S. Illumina-based analysis of bacterial community in Khuangcherapuk Cave of Mizoram, Northeast India. Genom. Data 2015, 5, 13–14. [Google Scholar] [CrossRef]
- Long, Y.; Jiang, J.; Hu, X.; Zhou, J.; Hu, J.; Zhou, S. Actinobacterial community in Shuanghe Cave using culture-dependent and -independent approaches. World J. Microbiol. Biotechnol. 2019, 35, 153. [Google Scholar] [CrossRef]
- De Leon, M.P.; Montecillo, A.D.; Pinili, D.S.; Siringan, M.A.T.; Park, D.S. Bacterial diversity of bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines: A first report on the metagenome of Philippine bat guano. PLoS ONE 2018, 13, e0200095. [Google Scholar] [CrossRef]
- Anda, D.; Krett, G.; Makk, J.; Márialigeti, K.; Mádl-Szőnyi, J. Comparison of bacterial and archaeal communities from different habitats of the hypogenic Molnár János Cave of the Buda Thermal Karst System (Hungary). J. Cave Karst Stud. 2017, 79, 113–121. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Ariza, C.; Ubeda, J.; Martin-Sanchez, P.; Jurado, V.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. Free-living Amoebae in sediments from the Lascaux Cave in France. Int. J. Speleol. 2013, 42, 9–13. [Google Scholar] [CrossRef]
- Lepinay, C.; Mihajlovski, A.; Touron, S.; Seyer, D.; Bousta, F.; Di Martino, P. Bacterial diversity associated with saline efflorescences damaging the walls of a French decorated prehistoric cave registered as a world cultural heritage site. Int. Biodeterior. Biodegrad. 2018, 130, 55–64. [Google Scholar] [CrossRef]
- Mihajlovski, A.; Lepinay, C.; Mirval, A.-L.; Touron, S.; Bousta, F.; Di Martino, P. Characterization of the archaeal and fungal diversity associated with gypsum efflorescences on the walls of the decorated Sorcerer’s prehistoric Cave. Ann. Microbiol. 2019, 69, 1071–1078. [Google Scholar] [CrossRef]
- Mulec, J.; Engel, A. Karst spring microbial mat microeukaryotic diversity differs across an oxygen-sulphide ecocline and reveals potential for novel taxa discovery. Acta Carsologica 2019, 48, 129–143. [Google Scholar] [CrossRef]
Cultural Methods | Cloning Sequencing | Metabarcoding | Shotgun Metagenomics |
---|---|---|---|
Principle | |||
Microbial isolation followed by characterization | DNA extraction, PCR cloning and sequencing of a taxonomic marker | DNA extraction, PCR amplification and sequencing of a taxonomic marker | DNA extraction and PCR-free sequencing of all DNA fragments |
Scale | |||
Typically hundreds to thousands of colonies per study | Typically hundreds to thousands of clones per study | Typically 2000 to 70,000 sequences per marker per sample | Typically 2000 to 70,000 sequences per marker per sample |
Advantages and added value | |||
Isolates enable also to assess strain physiology experimentally and to perform genomics, inexpensive | No particular advantage now that NGS is available | Enables to document the rare biosphere, inexpensive, well-established bioinformatics tools, requires less DNA than metagenomics, reference databases usually well developed | High-throughput, taxonomy not restricted to single markers, documents functional properties also, several NGS technologies available |
Drawbacks and limits | |||
Requires culturability, tedious and low-throughput | DNA extraction not effective for certain taxa, PCR primers not fully universal, tedious and low-throughput, expensive Sanger sequencing | DNA extraction not effective for certain taxa, PCR primers not fully universal, amplicon size limits taxonomic resolution | DNA extraction not effective for certain taxa, minor taxa hard to document, expensive, bioinformatics-intensive, reference databases far from exhaustive, requires more DNA than metabarcoding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontemps, Z.; Moënne-Loccoz, Y.; Hugoni, M. Contributions of DNA Sequencing Technologies to the Integrative Monitoring of Karstic Caves. Appl. Sci. 2024, 14, 9438. https://doi.org/10.3390/app14209438
Bontemps Z, Moënne-Loccoz Y, Hugoni M. Contributions of DNA Sequencing Technologies to the Integrative Monitoring of Karstic Caves. Applied Sciences. 2024; 14(20):9438. https://doi.org/10.3390/app14209438
Chicago/Turabian StyleBontemps, Zélia, Yvan Moënne-Loccoz, and Mylène Hugoni. 2024. "Contributions of DNA Sequencing Technologies to the Integrative Monitoring of Karstic Caves" Applied Sciences 14, no. 20: 9438. https://doi.org/10.3390/app14209438
APA StyleBontemps, Z., Moënne-Loccoz, Y., & Hugoni, M. (2024). Contributions of DNA Sequencing Technologies to the Integrative Monitoring of Karstic Caves. Applied Sciences, 14(20), 9438. https://doi.org/10.3390/app14209438