Characterization of Beer Produced with the Addition of Brown Macroalgae Fucus virsoides
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Alga Collection
2.2. Beer Production
2.3. Physical–Chemical Analysis of Beer
2.4. Measurement of Metals with ICP-MS
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mac Monagail, M.; Cornish, L.; Morrison, L.; Araújo, R.; Critchley, A.T. Sustainable harvesting of wild seaweed resources. Eur. J. Phycol. 2017, 52, 371–390. [Google Scholar] [CrossRef]
- White, W.L.; Wilson, P. Seaweed Sustainability-World Seaweed Utilization; Academic Press: Cambridge, MA, USA, 2015; pp. 7–25. [Google Scholar]
- Ścieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Charoensiddhi, S.; Abraham, R.E.; Su, P.; Zhang, W. Seaweed and seaweed-derived metabolites as prebiotics. Adv. Food Nutr. Res. 2020, 91, 97–156. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Pereira, O.; Seca, A.; Pinto, D.; Silva, A. Seaweeds as preventive agents for cardiovascular diseases: From nutrients to functional foods. Mar. Drugs 2015, 13, 6838–6865. [Google Scholar] [CrossRef] [PubMed]
- BBC News Mag. Future Foods: What Will We Be Eating in 20 Years’ Time? 2012. Available online: https://www.bbc.com/news/magazine-18813075 (accessed on 25 July 2024).
- AlgaeBase, World-Wide Electronic Publication. Available online: https://ci.nii.ac.jp/naid/20001423979/ (accessed on 23 July 2024).
- Kucera, H.; Saunders, G.W. Assigning morphological variants of Fucus (Fucales, Phaeophyceae) in Canadian waters to recognized species using DNA barcoding. Botany 2008, 86, 1065–1079. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Phycochemical Constituents and Biological Activities of Fucus spp. Mar. Drugs 2018, 16, 249. [Google Scholar] [CrossRef]
- Guiry, M.; Agardh, J. 1868, in: Algae Base Fucus virsoides. 2020. Available online: https://www.algaebase.org/search/species/detail/?tc=accept&species_id=1358 (accessed on 3 September 2024).
- Dobrinčić, A.; Dobroslavić, E.; Pedisić, S.; Balbino, S.; Elez Garofulić, I.; Čož-Rakovac, R.; Dragović-Uzelac, V. The effectiveness of the Fucus virsoides and Cystoseira barbata fucoidan isolation as a function of applied pre-treatment and extraction conditions. Algal Res. 2021, 56, 102286. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, S.Y.; Lee, J.Y.; Park, J.H. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 2010, 10, 96. [Google Scholar] [CrossRef]
- Lintschinger, J.; Fuchs, N.; Moser, J.; Kuehnelt, D.; Goessler, W. Selenium-enriched sprouts. A raw material for fortified cereal-based diets. J. Agric. Food Chem. 2000, 48, 5362–5368. [Google Scholar] [CrossRef]
- Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014, 39, 112–120. [Google Scholar] [CrossRef]
- Gómez-Jacinto, V.; Navarro-Roldán, F.; Garbayo-Nores, I.; Vílchez-Lobato, C.; Borrego, A.A.; García-Barrera, T. In vitro selenium bioaccessibility combined with in vivo bioavailability and bioactivity in se-enriched microalga (Chlorella sorokiniana) to be used as functional food. J. Funct. Foods 2020, 66, 103817. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, C.; Zhang, T. Selenium transformation and selenium-rich foods. Food Biosci. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Galić, L.; Vinković, T.; Ravnjak, B.; Lončarić, Z. Agronomic Biofortification of Significant Cereal Crops with Selenium—A Review. Agronomy 2021, 11, 1015. [Google Scholar] [CrossRef]
- Manojlović, M.S.; Lončarić, Z.; Cabilovski, R.R.; Popović, B.; Karalić, K.; Ivezić, V.; Ademi, A.; Singh, B.R. Biofortification of wheat cultivars with selenium. Acta Agric. Scand. Sect. B Soil. Plant Sci. 2019, 69, 715–724. [Google Scholar] [CrossRef]
- Alzate, A.; Fernández-Fernández, A.; Pérez-Conde, M.C.; Gutiérrez, A.M.; Cámara, C. Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir. J. Agric. Food Chem. 2008, 56, 8728–8736. [Google Scholar] [CrossRef]
- Gibson, C.; Park, Y.H.; Myoung, K.H.; Suh, M.K.; McArthur, T.; Lyons, G.; Stewart, D. The bio-fortication of barley with selenium. In Proceedings of the Convention of the Institute of Brewing and Distilling, Asia Pacific Section, Hobart, Australia, 19–24 March 2006; Leishman Associates: Hobart, Australia; 2006; pp. 1–13. [Google Scholar]
- Perez-Corona, M.T.; Sanchez-Martínez, M.; Valderrama, M.J.; Rodríguez, M.E.; Camara, C.; Madrid, Y. Selenium biotransformation’ by Saccharomyces cerevisiae and Saccharomyces bayanus during white wine manufacture: Laboratory-scale experiments. Food Chem. 2011, 124, 1050–1055. [Google Scholar] [CrossRef]
- Sanchez-Martínez, M.; da Silva, E.G.P.; Pérez-Corona, T.; Cámara, C.; Ferreira, S.L.C.; Madrid, Y. Selenite biotransformation during brewing. Evaluation by HPLC−ICP−MS. Talanta 2012, 88, 272–276. [Google Scholar] [CrossRef]
- Middle European Brewing Analysis Commission (MEBAK); Band II.n Brautechnische Middle European Brewing Analysis Commission (MEBAK). Band II.n Brautechnische Analysenmethoden, 3rd ed.; Selbstverlag der MEBAK: Freising-Weihenstephan, Germany, 1997. [Google Scholar]
- Kingston, H.M.; Jassie, L.B. Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples. Anal. Chem. 1986, 58, 2534–2541. [Google Scholar] [CrossRef]
- Lončarić, Z.; Ivezić, V.; Kerovec, D.; Rebekić, A. Foliar zinc-selenium and nitrogen fertilization affects content of Zn, Fe, Se, P, and Cd in wheat grain. Plants 2021, 10, 1549. [Google Scholar] [CrossRef]
- Špoljarić Maronić, D.; Žuna Pfeiffer, T.; Bek, N.; Štolfa Čamagajevac, I.; Galir Balkić, A.; Stević, F.; Maksimović, I.; Mihaljević, M.; Lončarić, Z. Distribution of selenium: A case study of the Drava, Danube and associated aquatic biotopes. Chemosphere 2024, 354, 141596. [Google Scholar] [CrossRef]
- Beisler, N.; Sandmann, M. Integration of Arthrospira platensis (spirulina) into the brewing process to develop new beers with unique sensory properties. Front. Sustain. Food Syst. 2022, 6, 918772. [Google Scholar] [CrossRef]
- Carnovale, G.; Leivers, S.; Rosa, F.; Norli, H.-R.; Hortemo, E.; Wicklund, T.; Horn, S.J.; Skjånes, K. Starch-Rich Microalgae as an Active Ingredient in Beer Brewing. Foods 2022, 11, 1449. [Google Scholar] [CrossRef] [PubMed]
- Rocha de Souza, M.C.; Marques, C.T.; Guerra Dore, C.M.; Ferreira da Silva, F.R.; Oliveira Rocha, H.A.; Leite, E.L. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 2007, 19, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Saluri, M.; Robal, M.; Tuvikene, R. Hybrid carrageenans as beer wort fining agents. Food Hydrocoll. 2019, 86, 26–33. [Google Scholar] [CrossRef]
- Poreda, A.; Sterczyńska, M.; Jakubowski, M.; Zdaniewicz, M. Klarowanie brzeczki piwnej przy użyciu karagenu–aspekty technologiczne i jakościowe. Zeszyty Problemowe Postępów Nauk. Rolniczych 2014, 576, 89–98. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.; Beeregowda, K. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy Metal Pollution in Surface Water and Sediment: A Preliminary Assessment of an Urban River in a Developing Country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Odobašić, A.; Šestan, I.; Begić, S. Biosensors for Determination of Heavy Metals in Waters. In Biosensors for Environmental Monitoring; BoD—Books on Demand: Paris, France, 2019. [Google Scholar]
- Dehbi, M.; Dehbi, F.; Kanjal, M.I.; Tahraoui, H.; Zamouche, M.; Amrane, A.; Assadi, A.A.; Hadadi, A.; Mouni, L. Analysis of Heavy Metal Contamination in Macroalgae from Surface Waters in Djelfa, Algeria. Water 2023, 15, 974. [Google Scholar] [CrossRef]
- Zamani-Ahmadmahmoodi, R.; Malekabadi, M.; Rahimi, R.; Johari, S.A. Aquatic Pollution Caused by Mercury, Lead, and Cadmium Affects Cell Growth and Pigment Content of Marine Microalga, Nannochloropsis oculata. Environ. Monit. Assess. 2020, 192, 330. [Google Scholar] [CrossRef]
- Pan, L.; Fang, G.; Wang, Y.; Wang, L.; Su, B.; Li, D.; Xiang, B. Potentially Toxic Element Pollution Levels and Risk Assessment of Soils and Sediments in the Upstream River, Miyun Reservoir, China. Int. J. Environ. Res. Public Health 2018, 15, 2364. [Google Scholar] [CrossRef]
- Chugh, M.; Kumar, L.; Shah, M.P.; Bharadvaja, N. Algal bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022, 7, 100129. [Google Scholar] [CrossRef]
- World Health Organization: Exposure To Arsenic: A Major Public Health Concern. Available online: https://www.who.int/docs/default-source/food-safety/arsenic/who-ced-phe-epe-19-4-1-eng.pdf (accessed on 9 September 2024).
- De Nicola, R.; Walker, G.M. Accumulation and cellular distribution of zinc by brewing yeast. Enzyme Microb. Technol. 2009, 44, 210–216. [Google Scholar] [CrossRef]
- van Voorst, F.; Houghton-Larsen, J.; Jønson, L.; Kielland-Brandt, M.C.; Brandt, A. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 2006, 23, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.B.; Ramaswamy, S.; Plapp, B.V. Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 2014, 53, 5791–5803. [Google Scholar] [CrossRef] [PubMed]
- Figueira, M.M.; Volesky, B.; Mathieu, H.J. Instrumental Analysis Study of Iron Species Biosorption by Sargassum Biomass. Environ. Sci. Technol. 1999, 33, 1840–1846. [Google Scholar] [CrossRef]
- Fourest, E.; Canal, C.; Roux, J.-C. Improvement of Heavy Metal Biosorption by Mycelial Dead Biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): PH Control and Cationic Activation. FEMS Microbiol. Rev. 1994, 14, 325–332. [Google Scholar] [CrossRef]
- Khoo, K.-M.; Ting, Y.-P. Biosorption of Gold by Immobilized Fungal Biomass. Biochem. Eng. J. 2001, 8, 51–59. [Google Scholar] [CrossRef]
- Brinza, L.; Dring, M.J.; Gavrilescu, M. Marine Micro and Macro Algal Species as Biosorbents for Heavy Metals. Environ. Eng. Manag. J. 2007, 6, 237–251. [Google Scholar] [CrossRef]
- Ordóñez, J.I.; Wong-Pinto, L.; Cortés, S. Biotecnología Aplicada a La Valorización de Relaves Mineros. In Economía Circular en Procesos Mineros; Cisternas, L., Gálvez, E., Rivas, M., Valderrama, J., Eds.; RIL Editores: Santiago, Chile, 2021; pp. 63–91. [Google Scholar]
- Sheng, P.X.; Ting, Y.-P.; Chen, J.P.; Hong, L. Sorption of Lead, Copper, Cadmium, Zinc, and Nickel by Marine Algal Biomass: Characterization of Biosorptive Capacity and Investigation of Mechanisms. J. Colloid. Interface Sci. 2004, 275, 131–141. [Google Scholar] [CrossRef]
- Królak, K.; Kobus, K.; Kordialik-Bogacka, E. Effects on beer colloidal stability of full-scale brewing with adjuncts, enzymes, and finings. Eur. Food Res. Technol. 2023, 249, 47–53. [Google Scholar] [CrossRef]
Quality Indicator | Unit | Algae Beer | Control Beer |
---|---|---|---|
Specific gravity | mg/L | 1.02935 a ± 0.00012 | 1.02495 b ± 0.00010 |
Real extract | % | 8.70 a ± 0.1 | 7.60 b ± 0.2 |
Original extract (wort) | °P | 14.30 a ± 0.5 | 12.80 b ± 0.3 |
Apparent extract | % | 7.40 a ± 0.1 | 6.30 b ± 0.1 |
Alcohol content | % | 3.80 a ± 0.45 | 3.55 b ± 0.23 |
Polyphenol content | mg/L | 513 b ± 1 | 590 a ± 1 |
pH | 4.25 a ± 0.02 | 4.07 b ± 0.05 | |
Bitterness | IBU | 42 a ± 1 | 42 a ± 1 |
Color | EBC | 100 a ± 2 | 98 a ± 1 |
Metal | S | Mg | P | K | Ca | Cr | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beer/Unit | mg/L | mg/L | mg/L | mg/L | mg/L | µg/L | mg/L | mg/L | µg/L | µg/L | mg/L | mg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L |
Control | 113.45 b | 148.55 b | 300.05 b | 903.10 b | 98.22 b | 1.03 a | 1.01 b | 0.23 b | 0.19 b | 7.69 | 0.07 a | 0.07 a | 0.42 b | 1.72 a | 28.71 a | 0.19 b | <LOD | 0.98 a |
Algae | 179.9 a | 188.40 a | 361.05 a | 1140.50 b | 149.05 a | 1.67 a | 1.26 a | 0.72 a | 2.30 a | 15.52 | 0.03 b | 0.49 b | 77.94 b | 1.77 a | 26.98 b | 0.91 a | <LOD | 1.05 a |
Metal | S | Mg | P | K | Ca | Cr | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample/Unit | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | µg/kg | mg/kg | mg/kg | µg/kg | µg/kg | mg/kg | mg/kg | µg/kg | µg/kg | µg/kg | µg/kg | µg/kg | µg/kg |
Algae (dry matter) | 23,855.00 | 9167.00 | 1290.50 | 24,035.00 | 18,305.00 | 572.70 | 72.40 | 86.97 | 1215.00 | 2685.00 | 2.44 | 19.59 | 25,390.00 | 36.32 | 264.12 | 484.54 | 4.31 | 328.68 |
Metal | S | Mg | P | K | Ca | Cr | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yeast/Unit | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | µg/kg | mg/kg | mg/kg | µg/kg | µg/kg | mg/kg | mg/kg | µg/kg | µg/kg | µg/kg | µg/kg | µg/kg | µg/kg |
Control | 535.65 a | 530.95 a | 2421.50 a | 3298.50 a | 813.35 a | 4.99 b | 2.51 a | 41.80 b | 23.84 a | 113.90 b | 2.88 a | 34.46 a | 14.46 b | 13.38 a | 225.17 a | 27.73 a | <LOD | 11.82 b |
Algae | 375.00 b | 167.15 b | 489.70 b | 780.80 b | 655.00 b | 13.30 b | 1.57 b | 22.54 b | 24.59 a | 142.25 a | 2.15 b | 13.47 b | 44.78 a | 4.37 b | 165.61 b | 8.74 b | <LOD | 32.66 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habschied, K.; Lončarić, Z.; Jokić, S.; Aladić, K.; Krstanović, V.; Mastanjević, K. Characterization of Beer Produced with the Addition of Brown Macroalgae Fucus virsoides. Appl. Sci. 2024, 14, 9594. https://doi.org/10.3390/app14209594
Habschied K, Lončarić Z, Jokić S, Aladić K, Krstanović V, Mastanjević K. Characterization of Beer Produced with the Addition of Brown Macroalgae Fucus virsoides. Applied Sciences. 2024; 14(20):9594. https://doi.org/10.3390/app14209594
Chicago/Turabian StyleHabschied, Kristina, Zdenko Lončarić, Stela Jokić, Krunoslav Aladić, Vinko Krstanović, and Krešimir Mastanjević. 2024. "Characterization of Beer Produced with the Addition of Brown Macroalgae Fucus virsoides" Applied Sciences 14, no. 20: 9594. https://doi.org/10.3390/app14209594
APA StyleHabschied, K., Lončarić, Z., Jokić, S., Aladić, K., Krstanović, V., & Mastanjević, K. (2024). Characterization of Beer Produced with the Addition of Brown Macroalgae Fucus virsoides. Applied Sciences, 14(20), 9594. https://doi.org/10.3390/app14209594