Study on the Bearing Structure of Key Strata and the Linkage Evolution Mechanism of Surface Subsidence in Shallow Coal Seam Mining
Abstract
:1. Introduction
2. Simulation Design for Rock Movement and Surface Subsidence in Key Strata
2.1. Engineering Background
2.2. Similar Material Simulation Experiment
3. Analysis of Key Strata Failure Structure and Movement Characteristics in Shallow Coal Seam Mining
3.1. Characteristics of Key Strata Fracture in Shallow Coal Seam Mining
3.2. Key Strata-Bearing Structure and Surface Movement Characteristics
4. Mechanical Calculation and Analysis of Key Strata-Inclined-Bearing Structure
4.1. Building a Mechanical Model
4.2. Mechanical Analysis of Full-Trapezoidal Hinged Arch Load-Bearing Structure
4.3. Mechanical Analysis of Load-Bearing Structure of Trapezoid-like Hinged Arch
5. Analysis of Rock Movement and Surface Subsidence Coupling Characteristics in Key Strata-Bearing Structures
5.1. Analysis of Settlement of Key Strata-Bearing Structure
5.2. Analysis of Surface Subsidence Based on Key Strata-Bearing Structure Control
5.3. Prediction of Key Strata and Surface Subsidence
6. Conclusions
7. Shortcomings and Innovations of This Manuscript
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, F.L.; Liu, B.Q.; Lv, K.; Gao, A.; Song, J.Y. Classification and movement characteristics of overlying strata structure of coal seams group mining in Datong mining area. J. Min. Saf. Eng. 2023, 40, 972–982. [Google Scholar]
- Islam, A.; Abdullah, R.A.; Ibrahim, I.S.; Lai, G.T.; Chaudry, M.H. Effect of stress ratio K due to varying overburden topography on crack intensity of tunnel liner. J. Perform. Constr. Facil. 2023, 37, 04023026. [Google Scholar] [CrossRef]
- Huang, Q.X.; Wang, X.J.; Hu, J.; Zhou, H.F.; Li, J. Activated roof structure and dynamic load of support under goaf of shallow-buried close coal seams in loss hilly area. J. Min. Saf. Eng. 2023, 40, 983–990. [Google Scholar]
- Malinowska, A.A.; Hejmanowski, R. The impact of deep underground coal mining on earth fissure occurrence. Acta Geodyn. Geomater. 2016, 13, 321–330. [Google Scholar] [CrossRef]
- Prakash, A.; Kumar, A.; Verma, A. Trait of subsidence under high rate of coal extraction by longwall mining: Some inferences. Sadhana-Acad. Proc. Eng. Sci. 2021, 46, 216. [Google Scholar] [CrossRef]
- Li, S.; Fan, C.J.; Luo, M.K.; Yang, Z.H.; Lan, T.W.; Zhang, H.F. Structure and deformation measurements of shallow overburden during top coal caving longwall mining. Int. J. Min. Sci. Technol. 2017, 27, 1081–1085. [Google Scholar] [CrossRef]
- Zhao, B.C.; Guo, Y.X.; Mao, Y.X.; Zhai, D.; Zhu, D.F.; Huo, Y.M.; Sun, Z.D.; Wang, J.B. Prediction method for surface subsidence of coal seam mining in loess donga based on the probability integration model. Energies 2022, 15, 2282. [Google Scholar] [CrossRef]
- Zhou, D.W.; Wu, K.; Bai, Z.H.; Hu, Z.Q.; Li, L.; Xu, Y.K.; Diao, X.P. Formation and development mechanism of ground crack caused by coal mining: Effects of overlying key strata. Bull. Eng. Geol. Environ. 2019, 78, 1025–1044. [Google Scholar]
- Curtaz, M.; Ferrero, A.M.; Roncella, R.; Segalini, A.; Umili, G. Terrestrial photogrammetry and numerical modelling for the stability analysis of rock slopes in high mountain areas: Aiguilles marbrees case. Rock Mech. Rock Eng. 2014, 47, 605–620. [Google Scholar] [CrossRef]
- He, C.C.; Xu, J.L. Subsidence prediction of overburden strata and surface based on the voussoir beam structure theory. Adv. Civ. Eng. 2018, 2018, 2606108. [Google Scholar] [CrossRef]
- Malashkevych, D.; Petlovanyi, M.; Sai, K.; Zubko, S. Research into the coal quality with a new selective mining technology of the waste rock accumulation in the mined-out area. Min. Miner. Depos. 2022, 16, 103–114. [Google Scholar] [CrossRef]
- Bazaluk, O.; Kuchyn, O.; Saik, P.; Soltabayeva, S.; Brui, H.; Lozynskyi, V.; Cherniaiev, O. Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline. Sci. Rep. 2023, 13, 19327. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.Q.; Le, T.T.T.; Nguyen, T.G.; Tran, D.T. Prediction of underground mining-induced subsidence: Artificial neural network based approach. Min. Miner. Depos. 2023, 17, 45–52. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.F.; Yang, T.; Bai, W.Y.; Wu, J.J. Coevolution mechanism and branch of pillar-overburden fissures in shallow coal seam mining. Energy Sci. Eng. 2023, 11, 1630–1642. [Google Scholar] [CrossRef]
- Guo, J.G.; Wang, W.G.; He, F.L.; Zhang, G.C. Main roof break structure and surrounding stability analysis in gob-side entry with fully-mechanized caving mining. J. Min. Saf. Eng. 2019, 36, 446–454+464. [Google Scholar]
- Jiránková, E.; Waclawik, P.; Nemcik, J. Assessment of models to predict surface subsidence in the czech part of the upper silesian coal basin-case study. Acta Geodyn. Geomater. 2020, 17, 469–484. [Google Scholar] [CrossRef]
- Huang, Q.X.; Gao, X.Y.; He, Y.P.; Wei, B.N. Research on strata structure and dynamic load transfer of under coal pillars of last mining section in shallow and close coal seams. Min. Saf. Eng. 2023, 40, 517–524. [Google Scholar]
- Meng, X.J.; Zhang, G.C.; Li, Y.; Chen, L.J.; Wang, C. Migration evolution laws of overburden structure with deep-lying thick surface soil and disaster mechanism induced by high stress mutation. J. China Coal Soc. 2023, 48, 1919–1931. [Google Scholar]
- Zhang, J.; He, Y.F. Research on the fracture evolution law and combined bearing structure load of shallow buried coal seam group. Coal Sci. Technol. 2023, 51, 65–76. [Google Scholar]
- Gao, C.; Xu, N.Z.; He, B.Q. Study on influence of key strata on surface subsidence law of fully-mechanized caving mining in extra-thick coal seam. Coal Sci. Technol. 2019, 47, 229–234. [Google Scholar]
- Zhang, J.; He, Y.F.; Yang, T.; Bai, W.Y.; Gao, S.S.; Yan, Y.H. Study on the co-evolution mechanism of key strata and mining fissure in shallow coal seam mining. Appl. Sci. 2023, 13, 8036. [Google Scholar] [CrossRef]
- Hou, E.K.; Xie, X.S.; Feng, D.; Chen, X.Y.; Che, X.Y. Laws and prevention methods of ground cracks in shallow coal seam mining. Coal Geol. Explor. 2022, 50, 30–40. [Google Scholar]
- Gaur, V.P.; Kar, S.K.; Srivastava, M. Development of ground fissures: A case study from southern parts of uttar pradesh, India. J. Geol. Soc. India 2015, 86, 671–678. [Google Scholar] [CrossRef]
- Bai, E.H.; Guo, W.B.; Tan, Y.; Guo, M.J.; Wen, P. Regional division and its criteria of mining fractures based on overburden critical failure. Sustainability 2022, 14, 5161. [Google Scholar] [CrossRef]
- Yu, X.Y.; Zhang, E.Q. Mining Damage Science; Coal Industry: Beijing, China, 2010. [Google Scholar]
- Li, J.Y.; Wang, L. Mining subsidence monitoring model based on BPM-EKTF and TLS and its application in building mining damage assessment. Environ. Earth Sci. 2021, 80, 396. [Google Scholar] [CrossRef]
- Zhu, X.J.; Guo, G.L.; Zha, J.F.; Chen, T.; Fang, Q.; Yang, X.Y. Surface dynamic subsidence prediction model of solid backfill mining. Environ. Earth Sci. 2016, 75, 1007. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, H.; Kim, J.G. Current status of and challenges for phytoremediation as a sustainable environmental management plan for abandoned mine areas in korea. Sustainability 2023, 15, 2761. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Wang, H.J.; Gao, R.; Zhao, Y.Q. Surface subsidence characteristics of mining panel layout configuration with multi-seam longwall mining. Processes 2023, 11, 1590. [Google Scholar] [CrossRef]
- Liang, M.; Yang, G.; Zhu, X.J.; Cheng, H.; Zheng, L.G. AHP-EWM based model selection system for subsidence area research. Sustainability 2023, 15, 7135. [Google Scholar] [CrossRef]
- He, C.C. Method to Predict the Surface Subsidence Based on the Key Strata Structure; China University of Mining and Technology: Xuzhou, China, 2018. [Google Scholar]
- Mehrabi, A.; Derakhshani, R.; Nilfouroushan, F.; Rahnamarad, J.; Azarafza, M. Spatiotemporal subsidence over Pabdana coal mine Kerman Province, central Iran using time-series of Sentinel-1 remote sensing imagery. Episodes 2023, 46, 19–33. [Google Scholar] [CrossRef]
- Hossain, M.I.S.; Alam, M.S.; Biswas, P.K.; Rana, M.S.; Sultana, M.S. Integrated satellite imagery and electrical resistivity analysis of underground mine-induced subsidence and associated risk assessment of Barapukuria coal mine, Bangladesh. Environ. Earth Sci. 2023, 82, 537. [Google Scholar] [CrossRef]
- Yi, T.; Han, X.; Yan, W.T.; Guo, W.B. Study on the overburden failure law of high-intensity mining in gully areas with exposed bedrock. Front. Earth Sci. 2022, 10, 833384. [Google Scholar] [CrossRef]
- Wang, X.F.; Wei, Y.Y.; Yuan, H.Y.; Zhang, Y.Y.; Zhang, Q. Model test study on overburden failure and fracture evolution characteristics of deep stope with variable length. Adv. Civ. Eng. 2022, 2022, 9818481. [Google Scholar] [CrossRef]
- Li, H.C. Similarity Simulation Experiments of Mine Pressure; China University of Mining and Technology Press: Xuzhou, China, 1988. [Google Scholar]
- Huang, Q.X.; Zhao, M.Y.; Huang, K.J. Study of roof double key strata structure and support resistance of shallow coal seams group mining. J. China Univ. Min. Technol. 2019, 48, 71–77+86. [Google Scholar]
- Qian, M.G.; Miao, X.X.; He, F.L. Analysis of key block in the structure of voussoir beam in longwall mining. J. China Coal Soc. 1994, 6, 557–563. [Google Scholar]
- Su, C.D.; Gu, M.; Tang, X.; Guo, W.B. Experiment study of compaction characteristics of crushed stones from coal seam roof. Chin. J. Rock Mech. Eng. 2012, 31, 18–26. [Google Scholar]
Number | Lithology | Thickness (m) | Model Thickness (m) | Tensile Strength (MPa) | Compressive Strength (MPa) | Cohesion (MPa) | Bulk Modulus (MPa) | Volumetric Weight (kN·m−3) |
---|---|---|---|---|---|---|---|---|
14 | Loess | 18.1 | 18 | 0.089 | 0.42 | 0.44 | 1134 | 16.3 |
13 | Siltstone | 16.63 | 16.5 | 2.1 | 31.2 | 0.72 | 738 | 23.4 |
12 | Medium-grained sandstone | 5.08 | 5 | 2.42 | 28.4 | 1.56 | 1487 | 23.8 |
11 | Mudstone | 2.66 | 2.5 | 1.33 | 13.2 | 0.73 | 733 | 27.6 |
10 | Fine-grained sandstone | 1.6 | 1.5 | 1.95 | 28.6 | 2.43 | 1536 | 23.2 |
9 | Siltstone | 4.93 | 5 | 2.3 | 32.1 | 0.56 | 756 | 24.1 |
8 | Coarse-grained sandstone | 10.77 | 11 | 2.54 | 26.4 | 1.53 | 1433 | 22.8 |
7 | Mudstone | 1.2 | 1.5 | 1.29 | 12.9 | 0.69 | 752 | 28.1 |
6 | Fine-grained sandstone | 1.23 | 1.5 | 1.94 | 27.9 | 2.50 | 1531 | 23.0 |
5 | Medium-grained sandstone | 0.53 | 0.5 | 2.33 | 27.3 | 165 | 1494 | 23.4 |
4 | Fine-grained sandstone | 3.7 | 4 | 1.87 | 28.3 | 2.46 | 1548 | 23.5 |
3 | Siltstone | 4.65 | 4.5 | 2.2 | 29.8 | 0.64 | 746 | 23.1 |
2 | No. 1–2 coal seam | 2.95 | 3 | 0.37 | 12.4 | 1.23 | 614 | 13.2 |
1 | Siltstone | 3.92 | 4 | 2.4 | 28.9 | 0.72 | 782 | 24.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhang, J.; Yang, T.; Wu, J.; Gao, S.; Sun, J. Study on the Bearing Structure of Key Strata and the Linkage Evolution Mechanism of Surface Subsidence in Shallow Coal Seam Mining. Appl. Sci. 2024, 14, 9608. https://doi.org/10.3390/app14209608
He Y, Zhang J, Yang T, Wu J, Gao S, Sun J. Study on the Bearing Structure of Key Strata and the Linkage Evolution Mechanism of Surface Subsidence in Shallow Coal Seam Mining. Applied Sciences. 2024; 14(20):9608. https://doi.org/10.3390/app14209608
Chicago/Turabian StyleHe, Yifeng, Jie Zhang, Tao Yang, Jianjun Wu, Shoushi Gao, and Jianping Sun. 2024. "Study on the Bearing Structure of Key Strata and the Linkage Evolution Mechanism of Surface Subsidence in Shallow Coal Seam Mining" Applied Sciences 14, no. 20: 9608. https://doi.org/10.3390/app14209608
APA StyleHe, Y., Zhang, J., Yang, T., Wu, J., Gao, S., & Sun, J. (2024). Study on the Bearing Structure of Key Strata and the Linkage Evolution Mechanism of Surface Subsidence in Shallow Coal Seam Mining. Applied Sciences, 14(20), 9608. https://doi.org/10.3390/app14209608