Preventing Overturning of Mobile Cranes Using an Electrical Resistivity Measurement System
Abstract
:1. Introduction
2. Objective
3. Methodology
3.1. Geophysical Exploration Methods
3.2. Electrical Resistivity Measurement System
3.3. Foldable Electrode with Water Supply Device
3.4. Underground Safety Evaluation Algorithm
3.5. Graphical User Interface Program
4. Performance TEST
4.1. Comparison of the Performance Between Cylindrical Mass and Pin Electrodes
4.2. Comparison of 1D Exploration with ERMS and Commercial Equipment
4.3. Comparison of 2D Exploration with ERMS and Commercial Equipment
4.4. Performance Test on Shale Ground and Coastal Ground
5. Mobile Crane with Electrical Resistivity Measurement System
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shapira, A.; Lucko, G.; Schexnayder, C.J. Cranes for building construction projects. J. Constr. Eng. Manag. 2007, 133, 690–700. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, Y.K.; Durso, F.; Seo, J. Assessment of operator’s situation awareness for smart operation of mobile cranes. Autom. Constr. 2018, 85, 65–75. [Google Scholar] [CrossRef]
- MacCollum, D. Critical hazard analysis and crane design. Prof. Saf. 1980, 24, 31–36. [Google Scholar]
- Milazzo, M.F.; Ancione, G.; Brkie, V.S.; Valis, D. Investigation of crane operation safety by analyzing main accident causes. In Risk, Reliability and Safety: Innovating Theory and Practice, 1st ed.; Walls, L., Revie, M., Bedford, T., Eds.; Taylor & Francis: London, UK, 2017; pp. 74–80. [Google Scholar]
- Hamid, A.R.A.; Azhari, R.; Zakaria, R.; Aminudin, E.; Jaya, R.P.; Nagarajan, L.; Yahya, K.; Haron, Z.; Yunus, R. Causes of crane accidents at construction sites in Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2019, 220, 012028. [Google Scholar] [CrossRef]
- Kim, S.; Kang, C. Analysis of the complex causes of death accidents due to mobile cranes using a modified MEPS method: Focusing on South Korea. Sustainability 2022, 14, 2948. [Google Scholar] [CrossRef]
- Al-Humaidi, H.M.; Hadipriono, F.T. Mobile crane safe operation approach to prevent electrocution using fuzzy-set logic models. Adv. Eng. Softw. 2009, 40, 686–696. [Google Scholar] [CrossRef]
- Lee, J.; Phillips, I.; Lynch, Z. Causes and prevention of mobile crane-related accidents in South Korea. Int. J. Occup. Saf. Ergon. 2020, 14, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Zhen, L.; Hosein, T.; Ulrich, H.; Mohamed, A.H. A methodology for mobile crane lift path checking in heavy industrial projects. Autom. Constr. 2013, 31, 41–53. [Google Scholar]
- Safouhi, H.; Mouattamid, M.; Hermann, U.; Hendi, A. An algorithm for the calculation of feasible mobile crane position areas. Autom. Constr. 2011, 20, 360–367. [Google Scholar] [CrossRef]
- Soungho, C.; Tomohiro, Y. Application of RFID technology to prevention of collision accidents with heavy equipment. Autom. Constr. 2010, 19, 368–374. [Google Scholar]
- Leonard, E.B.; Steven, J.L.; Erik, L. Intelligent technology for truck crane accident prevention. J. Constr. Eng. Manag. 1997, 123, 276–284. [Google Scholar]
- Ala, N.T.; Hosein, T.; Ali, M.; Anahita, B.; Ulrich, H. BIM-based 4D mobile crane simulation and onsite operation management. Autom. Constr. 2021, 128, 103766. [Google Scholar]
- Weijun, R.; Zifeng, W. Real-time anticollision system for mobile cranes during lift operations. J. Comput. Civ. Eng. 2015, 29, 04014100. [Google Scholar]
- Fang, Y.; Cho, Y.K.; Chen, J. A framework for real-time proactive safety assistance for mobile crane lifting operations. Autom. Constr. 2016, 72, 367–379. [Google Scholar] [CrossRef]
- Fukagawa, R.; Muroa, T. Alarm system to prevent the overturning of truck cranes considering possible ground failure. In Automation and Robotics in Construction XI; Elsevier: Amsterdam, The Netherlands, 1994; pp. 27–34. [Google Scholar]
- Guangfu, S.; Michael, K. Dynamic responses of hydraulic mobile cranes with consideration of the drive system. Mech. Mach. Theory 2003, 38, 1489–1508. [Google Scholar]
- Kiliçslan, S.; Balkan, T.; Ider, S.K. Tipping loads of mobile cranes with flexible booms. J. Sound Vib. 1999, 223, 645–657. [Google Scholar] [CrossRef]
- Romanello, G. A graphical approach for the determination of outrigger loads in mobile cranes. Mech. Based Des. Struct. Mach. 2020, 50, 767–780. [Google Scholar] [CrossRef]
- Tamate, S.; Suemasa, N.; Katada, T. Analyses of instability in mobile cranes due to ground penetration by outriggers. J. Constr. Eng. Manag. 2005, 131, 689–697. [Google Scholar] [CrossRef]
- Jeng, S.L.; Yang, C.F.; Chieng, W.H. Outrigger force measure for mobile crane safety based on linear programming optimization. Mech. Based Des. Struct. Mach. 2010, 38, 145–170. [Google Scholar] [CrossRef]
- Han, D.S.; Ha, J.M.; Han, G.J. Development of many-angular pin type load cell for an overload limiter of a movable crane. Key Eng. Mater. 2009, 413, 291–298. [Google Scholar]
- Noh, S.H.; Lee, Y.S.; Kim, S.H.; Cho, J.S.; Han, C.S.; Lee, S.Y.; Lee, D.E. Economical auto moment limiter for preventing mobile cargo crane overload. Sensors 2020, 20, 6355. [Google Scholar] [CrossRef] [PubMed]
- Kargar, M.; Jahangiri, M.; Alimohammadlu, M.; Kamalinia, M.; Mirazahossieninejad, V. Risk assessment of mobile crane overturning in asymmetric tandem lifting (ATL) operation based on fuzzy fault tree analysis (FFTA). Results Eng. 2022, 16, 100755. [Google Scholar] [CrossRef]
- Congwen, K.; Chimay, J.A.; Fang, Y.; John, I.M. Use of analytical tools to mitigate mobile crane-related failures. Constr. Res. Congr. 2018, 184–195. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, Y.K. Effectiveness analysis from a cognitive perspective for a real-time safety assistance system for mobile crane lifting operations. J. Constr. Eng. Manag. 2017, 143, 05016025. [Google Scholar] [CrossRef]
- Anbazhagan, P. Geotechnics for Natural and Engineered Sustainable Technologies; Springer: Singapore, 2018. [Google Scholar]
- Choi, S.K.; Back, S.H.; An, J.B.; Kwon, T.H. Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction. J. Korean Tunn. Undergr. Space Assoc. 2016, 18, 143–154. [Google Scholar] [CrossRef]
- Choi, S.O.; Jeon, Y.S.; Park, E.S.; Jung, Y.B.; Chun, D.S. Analysis of subsidence mechanism and development of evaluation program. Tunn. Undergr. Space 2005, 15, 195–212. [Google Scholar]
- Karoui, T.; Jeong, S.Y.; Jeong, Y.H.; Kim, D.S. Experimental study of ground subsidence mechanism caused by sewer pipe cracks. Appl. Sci. 2018, 8, 679. [Google Scholar] [CrossRef]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001; pp. 2–8. [Google Scholar]
- Schiavo, M. Entropy, fractality, and thermodynamics of groundwater pathways. J. Hydrol. 2023, 617, 128930. [Google Scholar] [CrossRef]
- Burger, H.R.; Sheehan, A.F.; Jones, C.H. Introduction to Applied Geophysics: Exploring the Shallow Subsurface; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley and Sons Ltd.: Chichester, UK, 1997. [Google Scholar]
- Kemna, A.; Vanderborght, J.; Kulessa, B.; Vereecken, H. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J. Hydrol. 2002, 267, 125–146. [Google Scholar] [CrossRef]
- Clement, R.; Fargier, Y.; Dubois, V.; Gance, J.; Gros, E.; Forquet, N. OhmPi: An open-source data logger for dedicated applications of electrical resistivity imaging at the small and laboratory scale. HardwareX 2020, 8, e00122. [Google Scholar] [CrossRef]
- Ducut, J.D.; Alipio, M.; Go, P.J.; Concepcion, R., II; Vicerra, R.R.; Bandala, A.; Dadios, E. A review of electrical resistivity tomography applications in underground imaging and object detection. Displays 2022, 73, 102208. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soil studies. Geoderma 2014, 223–225, 33–45. [Google Scholar] [CrossRef]
- Slob, E.; Sato, M.; Olhoeft, G. Ground-penetrating radar: Surface and borehole ground-penetrating radar developments. In Geophysics Today: A Survey of the Field as the Journal Celebrates its 75th Anniversary; Fomel, S., Ed.; SEG: Houston, TX, USA, 2010. [Google Scholar]
- Zajícová, K.; Chuman, T. Application of ground penetrating radar methods in civil engineering and geology. Geosciences 2021, 11, 31. [Google Scholar]
- Rodriguez, A.; Lázaro, M.; Sanz, M.A.; Aguirre, M.; López, E. Ground-penetrating radar technology for soil characterization and monitoring. J. Appl. Geophys. 2019, 169, 103895. [Google Scholar]
- D’Astous, A.; Neuman, S.P.; Lowry, S.D. Ground-penetrating radar and electrical resistivity imaging in monitoring moisture transport in a cover system. Geotech. Geol. Eng. 2018, 36, 73–89. [Google Scholar]
- Gurin, V.; Torgashev, A.; Torgasheva, I.; Sazhin, A.; Sazhin, D.; Badalian, A. Electrical resistivity tomography (ERT) for geotechnical applications. Geophys. J. Int. 2022, 229, 988–1006. [Google Scholar]
- Jha, B.K.; Koundal, M.; Kumar, S.; Sharma, K.K.; Kumar, R.; Dubey, A.K. Design and analysis of electrical resistivity tomography for geotechnical investigation of near-surface soils. Geotech. Geol. Eng. 2023, 41, 343–360. [Google Scholar]
- Uskov, A.V.; Hmila, H.; Khalil, A.; Kostiuchenko, S.V.; Kofman, E.M.; Zhamkov, R.A.; Sukhareva, A.G.; Nikiforov, V.I. Experimental study of resistivity tomography for detecting near-surface soil moisture. Sensors 2020, 20, 2091. [Google Scholar]
- Babich, A.V.; Sukhareva, A.G.; Uskov, A.V.; Nikiforov, V.I. Electrical resistivity tomography for soil moisture monitoring: A case study of the Alym river basin. Water 2021, 13, 3516. [Google Scholar]
- Yang, T.H.; Chen, H.C. The relationship between soil moisture and electrical resistivity in different soil conditions. Sensors 2020, 20, 6107. [Google Scholar]
- Bescos, C.; Martínez-García, D.; Esquius, J.; Gozalvez, J. A performance study of 2D resistivity inversion algorithms for characterization of subsurface materials: A case study. Geophys. Prospect. 2021, 69, 1986–1999. [Google Scholar]
- Zhao, J.; Chen, Z.; Huang, Y.; Li, Q.; Yang, Y.; Zhang, Y. Ground penetrating radar for monitoring soil moisture: A review. Water 2023, 15, 2261. [Google Scholar]
- Liu, J.; Zhang, S.; Zhang, Z.; Liu, G.; He, J.; Zhang, D.; Wu, Y. A novel approach to interpret ground penetrating radar data for soil moisture estimation. Remote Sens. 2022, 14, 5863. [Google Scholar]
- Mohamed, M.H.; Kaul, S.; Kahn, S.; Ghosh, M.; Khanna, N. A comparative study of electrical resistivity and ground penetrating radar methods for estimating soil moisture content. Sensors 2022, 22, 1234. [Google Scholar]
- Alsharif, A.A.; Daisuke, Y.; Kajiura, Y. A new approach for groundwater monitoring using resistivity imaging and GPR: A case study in Japan. Hydrol. Sci. J. 2022, 67, 793–810. [Google Scholar]
- Li, J.; Yang, Y.; Wang, Y.; Jiang, Z.; Gao, L.; Li, H. Comparison of electrical resistivity tomography and ground penetrating radar for monitoring moisture variation in unsaturated soils. Water 2023, 15, 120. [Google Scholar]
- Hatzopoulos, A.; Cacoub, T.; Kelaidis, A.; Natsopoulos, K. Multi-method geophysical investigation for the assessment of groundwater resources: A case study from Central Greece. Geophys. J. Int. 2022, 228, 923–936. [Google Scholar]
- Hurst, M.D.; Murchison, J.M.; Rivas, A.; Omari, A.; McGarry, M. Monitoring subsurface contamination using geophysical methods: Case studies in Pennsylvania and New York. Geophys. Prospect. 2022, 70, 262–279. [Google Scholar]
- Tsang, Y.; Hsu, S.; Li, C. Evaluation of soil moisture dynamics using geophysical methods: A case study in Taiwan. Sensors 2021, 21, 1237. [Google Scholar]
- Ma, Y.; Huo, X.; Zhou, H.; Cheng, Q.; Lin, L.; Wang, S. Soil moisture estimation using time-lapse electrical resistivity tomography: A case study. J. Appl. Geophys. 2021, 189, 104295. [Google Scholar]
- Yao, Y.; Zhao, Y.; Hu, Y.; Yu, Y.; Chen, Y. High-resolution 3D electrical resistivity imaging for mapping moisture content in a coastal aquifer: A case study. Water 2023, 15, 712. [Google Scholar]
- Hurst, M.D.; Dutton, A.; Krol, A.; El-Batanouny, M. Geophysical methods for groundwater exploration: A comprehensive review. Water 2022, 14, 122. [Google Scholar]
- Huang, J.; Liu, H.; Zhang, C.; Wang, Y.; Li, H. Geophysical methods for characterizing soil moisture content: A review of recent advances. J. Hydrol. 2022, 604, 127117. [Google Scholar]
- Zhang, C.; Wang, Z.; Liu, Q.; Wang, Y.; Li, Y. Advances in GPR technology for soil moisture estimation: A comprehensive review. Remote Sens. 2023, 15, 349. [Google Scholar]
- Wu, S.; Han, Y.; Yan, H.; Zhao, X.; Qiu, X.; Zhou, X. Monitoring soil moisture dynamics using GPR and ERT: A case study in an agricultural field. Sensors 2023, 23, 455. [Google Scholar]
- Korea Institute of Geoscience and Mineral Resources. DIPRO Version 4.01, Processing and Interpretation Software for Electrical Resistivity Data; Korea Institute of Geoscience and Mineral Resources: Daejeon, Republic of Korea, 2001. [Google Scholar]
Item | Function | Item | Function |
---|---|---|---|
(a) | Check the measurement status
| (h) | Check the number of the selected electrode |
(b) | Check the wireless communication | (i) | Start and save data |
(c) | Final confirmation | (j) | Save/analyze/recall |
(d) | Select a measurement method
| (k) | Reset: Initialize variables and test nodes |
(e) | Select how the water supply device works
| (l) | Emergency stop |
(f) | Settings for manual measurement
| (m) | Electrode node and test area (left/right) |
(g) | Settings for automatic measurements
| (n) | System log record
|
Electrode Spacing [m] | Pin Electrode Apparent Resistivity [Ohm·m] | Cylindrical Mass Electrode Apparent Resistivity [Ohm·m] | Error Rate [%] |
---|---|---|---|
1 | 132.75 | 134.63 | 1.42 |
2 | 168.17 | 167.84 | 0.20 |
3 | 174.59 | 172.70 | 1.08 |
4 | 178.29 | 174.08 | 2.36 |
5 | 184.20 | 182.07 | 1.16 |
6 | 186.20 | 185.95 | 0.13 |
7 | 187.70 | 187.52 | 0.10 |
8 | 178.24 | 178.57 | 0.19 |
Pseudo-Depth Level | ERMS Apparent Resistivity [Ohm·m] | MINISTING R1 Apparent Resistivity [Ohm·m] | Error Rate [%] | Note |
---|---|---|---|---|
1 | 90.35 | 91.63 | 1.42 | First point of each pseudo-depth level |
2 | 111.51 | 109.59 | 1.72 | |
3 | 136.1 | 133.96 | 1.57 | |
4 | 143.84 | 145.23 | 0.97 | |
5 | 175.35 | 175.66 | 0.17 | |
6 | 180.86 | 178.36 | 1.38 | |
7 | 188.79 | 185.96 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.; Lee, Y.; Lee, H.; Cha, Y.; Choi, S.; Park, J. Preventing Overturning of Mobile Cranes Using an Electrical Resistivity Measurement System. Appl. Sci. 2024, 14, 9623. https://doi.org/10.3390/app14219623
Jang H, Lee Y, Lee H, Cha Y, Choi S, Park J. Preventing Overturning of Mobile Cranes Using an Electrical Resistivity Measurement System. Applied Sciences. 2024; 14(21):9623. https://doi.org/10.3390/app14219623
Chicago/Turabian StyleJang, Hongseok, Yeonho Lee, Hongseok Lee, Youngtaek Cha, Sungjoon Choi, and Jongkyu Park. 2024. "Preventing Overturning of Mobile Cranes Using an Electrical Resistivity Measurement System" Applied Sciences 14, no. 21: 9623. https://doi.org/10.3390/app14219623
APA StyleJang, H., Lee, Y., Lee, H., Cha, Y., Choi, S., & Park, J. (2024). Preventing Overturning of Mobile Cranes Using an Electrical Resistivity Measurement System. Applied Sciences, 14(21), 9623. https://doi.org/10.3390/app14219623