Region-Based Approach for Machining Time Improvement in Robot Surface Finishing
Abstract
:1. Introduction
2. Preliminaries
3. Materials and Methods
3.1. Problem Formulation
3.2. Optimal Machining Path Direction
- Inner optimization procedure with the expression : This step identifies the maximum feasible speed across all points under consideration within a selected surface path. This speed represents the limiting factor for the machining process since the robot cannot exceed this speed in the specified direction.
- Outer maximization: After computing the maximum feasible speed for each direction, this step searches for the optimal direction that maximizes the machining speed on the surface patch. Maximizing this value ensures that the robot can achieve the highest feasible speed across the workpiece points in the optimal direction.
3.3. Surface Subdivision and Machining Time Estimation
3.3.1. Clustering
3.3.2. Surface Regionalization and Boundary Definition
3.3.3. Region Merging
3.3.4. Single Boundaries
3.4. Optimal Workpiece Placement
- Robot joint angles are within limits:
- The workpiece must be located within a working area:
- All points on the workpiece must be reachable, i.e., the inverse kinematic (IK) solutions must exist for all points.
- The robot must not be in self-collision, collision with the workpiece, or collision with the movable platform.
- The workpiece must be on the working table with its full area.
4. Case Study
4.1. Experimental Setup
- A.
- Arbitrary Single-Directional Machining
- B.
- Machining with Optimized Directional Methods
- Single optimal direction machining (Figure 4e,f): The machining direction was determined based on a calculated workpiece MTI, optimizing the toolpath for the most efficient single direction across the entire workpiece.
- Region-based optimal directional machining (Figure 4g,h): This approach involves creating distinct optimal machining toolpaths for different regions within the workpiece. Each region was machined according to a direction that maximized the region MTI of the corresponding segment of the workpiece and the overall workpiece MTI.
4.2. Region-Based Machining Validation
4.3. Workpiece Position Optimization
4.4. Path Speed Validation
4.4.1. Path Point—Wise Design Speed Validation
4.4.2. Region-Based Design Speed Validation
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gan, Z.L.; Musa, S.N.; Yap, H.J. A Review of the High-Mix, Low-Volume Manufacturing Industry. Appl. Sci. 2023, 13, 1687. [Google Scholar] [CrossRef]
- Magrini, E.; Ferraguti, F.; Ronga, A.J.; Pini, F.; De Luca, A.; Leali, F. Human-robot coexistence and interaction in open industrial cells. Robot. Comput. Integr. Manuf. 2020, 61, 101846. [Google Scholar] [CrossRef]
- Makulavičius, M.; Petkevičius, S.; Rožėnė, J.; Dzedzickis, A.; Bučinskas, V. Industrial Robots in Mechanical Machining: Perspectives and Limitations. Robotics 2023, 12, 160. [Google Scholar] [CrossRef]
- Verl, A.; Valente, A.; Melkote, S.; Brecher, C.; Ozturk, E.; Tunc, L.T. Robots in machining. CIRP Ann. 2019, 68, 799–822. [Google Scholar] [CrossRef]
- Bleicher, F.; Lechner, C.; Habersohn, C.; Kozeschnik, E.; Adjassoho, B.; Kaminski, H. Mechanism of surface modification using machine hammer peening technology. CIRP Ann. 2012, 61, 375–378. [Google Scholar] [CrossRef]
- Schulze, V.; Bleicher, F.; Groche, P.; Guo, Y.B.; Pyun, Y.S. Surface modification by machine hammer peening and burnishing. CIRP Ann. 2016, 65, 809–832. [Google Scholar] [CrossRef]
- Hagen, L.; Baumann, J.; Heidelmann, M.; Biermann, D.; Tillmann, W. Machine Hammer Peening and Its Effect on the Surface Integrity of Arc-Sprayed WC-W2C-FeCMnSi Coatings. Coatings 2023, 13, 1563. [Google Scholar] [CrossRef]
- Chan, W.L.; Cheng, H.K.F. Hammer peening technology—The past, present, and future. Int. J. Adv. Manuf. Technol. 2022, 118, 683–701. [Google Scholar] [CrossRef]
- Liu, H.; Tan, C.K.I.; Cheng, W.S.; Lim, G.W.; Tan, D.C.; Lee, C.J.; Cheng, J.J.; Cheng, H.K.F.; Lee, L.C. Effects of Robotic Hammer Peening on Structural Properties of Ni-Based Single-Crystal Superalloy: Dislocation Slip Traces and Crystallographic Reorientations. Metall. Mater. Trans. A 2020, 51, 3180–3193. [Google Scholar] [CrossRef]
- Mannens, R.; Uhlmann, L.; Lambers, F.; Feuerhack, A.; Bergs, T. Surface Integrity of AISI 52100 Bearing Steel after Robot-Based Machine Hammer Peening. J. Manuf. Mater. Process. 2020, 4, 61. [Google Scholar] [CrossRef]
- Liu, H.; Tan, C.K.I.; Dong, X.; Meng, T.L.; Cao, J.; Wei, Y. Laser-cladding and robotic hammer peening of stainless steel 431 on low alloy steel 4140 for surface enhancement and corrosion protections. J. Adhes. Sci. Technol. 2022, 36, 2313–2327. [Google Scholar] [CrossRef]
- Meng, T.L.; Wang, T.F.; Lin, M.; Ng, Y.; Tan, X.Y.; Teo, S.L.; Tan, C.K.I.; Lim, R.; Liu, H. Grinding- and robotic hammer peening-induced modifications in the near-surface regions of laser-cladded Inconel 718 coatings. Surf. Coat. Technol. 2024, 489, 131130. [Google Scholar] [CrossRef]
- KUKA. Surface Processing with a KR QUANTEC and KUKA.CNC. Available online: https://www.kuka.com/en-de/industries/solutions-database/2016/07/solution-robotics-sematek (accessed on 14 May 2024).
- Zhang, M.; Yan, J. A data-driven method for optimizing the energy consumption of industrial robots. J. Clean. Prod. 2021, 285, 124862. [Google Scholar] [CrossRef]
- Kot, T.; Bobovský, Z.; Vysocký, A.; Krys, V.; Šafařík, J.; Ružarovský, R. Method for Robot Manipulator Joint Wear Reduction by Finding the Optimal Robot Placement in a Robotic Cell. Appl. Sci. 2021, 11, 5398. [Google Scholar] [CrossRef]
- Baizid, K.; Chellali, R.; Yousnadj, A.; Meddahi, A.; Bentaleb, T. Genetic Algorithms based method for time optimization in robotized site. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010. [Google Scholar]
- Ye, C.; Yang, J.; Zhao, H.; Ding, H. Task-dependent workpiece placement optimization for minimizing contour errors induced by the low posture-dependent stiffness of robotic milling. Int. J. Mech. Sci. 2021, 205, 106601. [Google Scholar] [CrossRef]
- Stradovnik, S.; Hace, A. Workpiece Placement Optimization for Robot Machining Based on the Evaluation of Feasible Kinematic Directional Capabilities. Appl. Sci. 2024, 14, 1531. [Google Scholar] [CrossRef]
- Stradovnik, S.; Hace, A. Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining. Sensors 2022, 22, 4267. [Google Scholar] [CrossRef]
- Doan, N.C.N.; Lin, W. Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated robots. Robot. Comput. Integr. Manuf. 2017, 48, 233–242. [Google Scholar] [CrossRef]
- Vosniakos, G.-C.; Matsas, E. Improving feasibility of robotic milling through robot placement optimisation. Robot. Comput. Integr. Manuf. 2010, 26, 517–525. [Google Scholar] [CrossRef]
- Malhan, R.K.; Kabir, A.M.; Shah, B.; Gupta, S.K. Identifying Feasible Workpiece Placement with Respect to Redundant Manipulator for Complex Manufacturing Tasks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Dumas, C.; Caro, S.; Garnier, S.; Furet, B. Workpiece Placement Optimization of Six-Revolute Industrial Serial Robots for Machining Operations. In Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, 2–4 July 2012. [Google Scholar]
- Gotlih, J.; Brezocnik, M.; Karner, T. Stiffness-Based Cell Setup Optimization for Robotic Deburring with a Rotary Table. Appl. Sci. 2021, 11, 8213. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Li, Q. A region-based 3 + 2-axis machining toolpath generation method for freeform surface. Int. J. Adv. Manuf. Technol. 2018, 97, 1149–1163. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, E.; Sun, R.; Gao, W.; Fu, Z. Free-Form Surface Partitioning and Simulation Verification Based on Surface Curvature. Micromachines 2022, 13, 2163. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, Q.-H.; Xie, H.; Li, J.-R.; Zhou, X.; Hua, P. Optimization of Robot Posture and Workpiece Setup in Robotic Milling With Stiffness Threshold. IEEE/ASME Trans. Mechatron. 2022, 27, 582–593. [Google Scholar] [CrossRef]
- Liao, Z.-Y.; Li, J.-R.; Xie, H.-L.; Wang, Q.-H.; Zhou, X.-F. Region-based toolpath generation for robotic milling of freeform surfaces with stiffness optimization. Robot. Comput. Integr. Manuf. 2020, 64, 101953. [Google Scholar] [CrossRef]
- Xie, H.-L.; Li, J.-R.; Liao, Z.-Y.; Wang, Q.-H.; Zhou, X.-F. A robotic belt grinding approach based on easy-to-grind region partitioning. J. Manuf. Process. 2020, 56, 830–844. [Google Scholar] [CrossRef]
- Hu, Z.; Hua, L.; Qin, X.; Ni, M.; Liu, Z.; Liang, C. Region-based path planning method with all horizontal welding position for robotic curved layer wire and arc additive manufacturing. Robot. Comput. Integr. Manuf. 2022, 74, 102286. [Google Scholar] [CrossRef]
- Yin, F.-C. A Partitioning Grinding Method for Complex-Shaped Stone Based on Surface Machining Complexity. Arab. J. Sci. Eng. 2022, 47, 8297–8314. [Google Scholar] [CrossRef]
- Hace, A. Toward Optimal Robot Machining Considering the Workpiece Surface Geometry in a Task-Oriented Approach. Mathematics 2024, 12, 257. [Google Scholar] [CrossRef]
- Yoshikawa, T. Dynamic manipulability of robot manipulators. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985. [Google Scholar]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics; Advanced Textbooks in Control and Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Cardou, P.; Bouchard, S.; Gosselin, C. Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices. IEEE Trans. Robot. 2010, 26, 166–173. [Google Scholar] [CrossRef]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Kobayashi, S. Differential Geometry of Curves and Surfaces; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Lynch, K.M.; Park, F.C. Modern Robotics: Mechanics, Planning, and Control; Cambridge University Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Yoshikawa, T. Translational and rotational manipulability of robotic manipulators. In Proceedings of the IECON ‘91: 1991 International Conference on Industrial Electronics, Control and Instrumentation, Kobe, Japan, 28 October–1 November 1991. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Morgan Kaufmann Publishers Inc.: Berlington, MA, USA, 2011. [Google Scholar]
- Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef]
- Schafer, R. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- K, B.S.; Patel, D.; Dodiya, H. A brief review on feed rate optimization and different type of toolpath use in pocket machining. Int. J. Tech. Innov. Mod. Eng. Sci. (IJTIMES) 2019, 5, 1103–1110. [Google Scholar]
- Liu, H.; Ivan Tan, C.K.; Wei, Y.; Lim, G.W.; Cheng, W.S.; Maharjan, N. Robotic hammer peening-induced martensite in austenitic steels: Spatial distributions of plastic deformation and phase transformation. Procedia CIRP 2020, 87, 297–301. [Google Scholar] [CrossRef]
- Krall, S.; Christoph, L.; Michael, N.; Bleicher, F. Robot based machine hammer peening using an electromagnetic driven hammering device. In Proceedings of the 26th DAAAM International Symposium, Zadar, Croatia, 18–25 October 2015. [Google Scholar] [CrossRef]
Approach speed [mm/s] | 500 |
Retract speed [mm/s] | 500 |
Transition speed [mm/s] | 500 |
Stepover speed [mm/s] | 20 |
Stepover [mm] | 0.1–2 |
X-Direction | Y-Direction | Single Optimal | Regions | Impr. % | |
---|---|---|---|---|---|
MTI [s] | 114.46 | 151.89 | 113.59 | 66.82 | |
Max. feasible speed [mm/s] | 87.36 | 65.83 | 88.03 | R3: 340.3 | |
Stepover 2 mm | |||||
Machining time [min:s] | 4:32 | 5:53 | 4:30 | 3:35 | 20.4 |
Stepover 1 mm | |||||
Machining time [min:s] | 8:39 | 11:20 | 8:25 | 6:06 | 27.5 |
Stepover 0.5 mm | |||||
Machining time [min:s] | 16:52 | 22:15 | 16:16 | 10:58 | 32.6 |
Stepover 0.1 mm | |||||
Machining time [h:min:s] | 1:22:38 | 1:49:31 | 1:18:59 | 49:18 | 37.6 |
X-Direction | Y-Direction | Single Optimal | Regions | Impr. % | |
---|---|---|---|---|---|
MTI [s] | 68.31 | 106.89 | 65.02 | 42 | |
Max. feasible speed [mm/s] | 146.37 | 93.55 | 153.8 | R11: 568.8 | |
Stepover 2 mm | |||||
Machining time [min:s] | 3:11 | 4:09 | 3:07 | 2:57 | 5.3 |
Stepover 1 mm | |||||
Machining time [min:s] | 5:12 | 7:51 | 4:59 | 4:32 | 9 |
Stepover 0.5 mm | |||||
Machining time [min:s] | 9:53 | 15:15 | 9:28 | 7:28 | 21.1 |
Stepover 0.1 mm | |||||
Machining time [h:min:s] | 47:40 | 1:14:24 | 45:31 | 30:12 | 33.7 |
Optimization Constraint | Value |
---|---|
UR5e robot joint limits | |
Working area | |
Workpiece rotation |
Ran. Pos. 1 | Ran. Pos. 2 | Initial Pos. | Optimal Pos. | Impr. % | |
Workpiece 1 | |||||
Position [mm; mm; °] | −200; −525.2; 30 | 125.1; −540.5; 147.5 | 0; −570; 0 | −17.4; −564.6; 223.1 | |
MTI [s] | 69.04 | 71.24 | 66.82 | 60.98 | |
Machining time [min:s] | 6:19 | 6:28 | 6:06 | 5:51 | 4.1 |
Workpiece 2 | |||||
Position [mm; mm; °] | 55.4; −566.3; 153.5 | −165.6; −566.3; 153.5 | 0; −570; 0 | −104.9; −407.9, 301.8 | |
MTI [s] | 48.18 | 43.45 | 42.06 | 34.81 | |
Machining time [min:s] | 4:41 | 4:35 | 4:32 | 3:47 | 16.5 |
Path Directions | VVF Model | Machining Toolpath | Difference (%) |
---|---|---|---|
Workpiece 1 | |||
X-direction | 82.3 | 81.9 | 0.5 |
Y-direction | 72.2 | 71.2 | 1.3 |
Optimal direction | 93.3 | 90.2 | 3.4 |
Region-based directions | R1: 179.1, R2:213.4, R3: 120, R4: 292.2, R5: 203.6, R6: 91.6, R7: 104.5, R8: 228.4, R9: 155.7 | R1: 172.5, R2: 211.1, R3: 117.1, R4: 281, R5: 202.4, R6: 89.6, R7: 101.9, R8: 224, R9: 150 | R1: 3.8, R2: 1.1, R3: 2.4, R4: 3.9, R5: 0.6, R6: 2.2, R7: 2.5, R8: 1.9, R9: 3.7 |
Workpiece 2 | |||
X-direction | 124.6 | 123 | 1.3 |
Y-direction | 115.3 | 113.1 | 1.9 |
Optimal direction | 155.1 | 151.4 | 2.4 |
Region-based directions | R1: 233.1, R2: 271.2, R3: 276.1, R4: 262.6, R5: 327.4, R6: 240.4, R7: 454, R8: 415.3 R9: 345, R10: 591.6, R11: 216 | R1: 227.4, R2: 264.5, R3: 264.9, R4: 261.2, R5: 319.4, R6: 234.8, R7: 443.8, R8: 404.1, R9: 339.3, R10: 583.4, R11: 209.1 | R1: 2.5, R2: 2.5, R3: 4.1, R4: 0.5, R5: 2.5, R6: 2.4, R7: 2.3, R8: 2.7, R9: 1.7, R10: 1.4, R11: 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pušnik, T.; Hace, A. Region-Based Approach for Machining Time Improvement in Robot Surface Finishing. Appl. Sci. 2024, 14, 9808. https://doi.org/10.3390/app14219808
Pušnik T, Hace A. Region-Based Approach for Machining Time Improvement in Robot Surface Finishing. Applied Sciences. 2024; 14(21):9808. https://doi.org/10.3390/app14219808
Chicago/Turabian StylePušnik, Tomaž, and Aleš Hace. 2024. "Region-Based Approach for Machining Time Improvement in Robot Surface Finishing" Applied Sciences 14, no. 21: 9808. https://doi.org/10.3390/app14219808
APA StylePušnik, T., & Hace, A. (2024). Region-Based Approach for Machining Time Improvement in Robot Surface Finishing. Applied Sciences, 14(21), 9808. https://doi.org/10.3390/app14219808