Non-Linear Saturated Multi-Objective Pseudo-Screening Using Support Vector Machine Learning, Pareto Front, and Belief Functions: Improving Wastewater Recycling Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Case Study Data
2.2. Data Analysis
2.2.1. Lenth Statistics and Belief Functions
2.2.2. Screening Using Support Vector Machine Learning Variations
2.3. The Methodological Outline
- (1)
- Define the group of the controlling factors and the group of the quality characteristic responses that would form the examined input–output relationship.
- (2)
- Organize the input adjustments according to the non-linear fractional factorial planner of choice that best accommodates all settings.
- (3)
- Ensure that research time and costs are minimized by saturating the sampling scheme and by curbing the number of replicates.
- (4)
- Test the replication adequacy, data normality, and correlations among the characteristic responses, extending the checks within each participating factorial setting, too.
- (5)
- Perform factorial screening on the small multi-response dataset using a series of unreplicated single-response Lenth tests on separate replications for each characteristic response.
- (6)
- Implement combination rules based on the evidence theory of belief functions using criteria for maximum plausibility and maximum credibility to identify the leading regressors.
- (7)
- Compare factorial activeness predictions among characteristic responses using quadratic regression, quadratic support vector machine learning, and optimizable support-vector machine learning by contrasting the goodness-of-fit performances among the different results.
- (8)
- Propose a synchronous optimal solution using a multi-objective Pareto front approach.
- (9)
- Confirm and discuss optimal solution differences with other known multi-response, multi-parameter solvers.
2.4. The Computational Support
3. Results
3.1. Initial Data Screening
3.2. Multifactorial Solver Screening and Selection
3.3. Multifactorial Optimal Settings with Quadratic Effects
3.4. Multi-Objective Information Fusion Using Lenth Screening Statistics and Belief Functions
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Investment Bank. Wastewater as a Resource; European Investment Bank: Luxembourg, 2022; Available online: https://www.eib.org/attachments/publications/wastewater_as_a_resource_en.pdf (accessed on 9 August 2024).
- World Bank. Wastewater Is Not a Waste; World Bank Group: New York, NY, USA, 2024; Available online: https://www.worldbank.org/en/news/video/2020/03/19/wastewater-is-not-a-waste (accessed on 9 August 2024).
- United Nations. Sustainable Development Goal 6: Clean Water and Sanitation; United Nations: New York, NY, USA, 2024; Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 9 August 2024).
- United Nations. Sustainable Development Goal 8: Decent Work and Economic Growth; United Nations: New York, NY, USA, 2024; Available online: https://www.un.org/sustainabledevelopment/economic-growth/ (accessed on 9 August 2024).
- United Nations. Sustainable Development Goal 11: Sustainable Cities and Communities; United Nations: New York, NY, USA, 2024; Available online: https://www.un.org/sustainabledevelopment/cities/ (accessed on 9 August 2024).
- United Nations. Sustainable Development Goal 12: Responsible Consumption and Production; United Nations: New York, NY, USA, 2024; Available online: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/ (accessed on 9 August 2024).
- Morseletto, P.; Mooren, C.E.; Munaretto, S. Circular economy of water: Definition, strategies and challenges. Circ. Econ. Sustain. 2022, 2, 1463–1477. [Google Scholar] [CrossRef]
- Koseoglu-Imer, D.Y.; Oral, H.V.; Sousa Coutinho Calheiros, C.; Krzeminski, P.; Güçlü, S.; Almeida Pereira, S.; Surmacz-Gorska, J.; Plaza, E.; Samaras, P.; Binder, P.M.; et al. Current challenges and future perspectives for the full circular economy of water in European countries. J. Environ. Manag. 2023, 345, 118627. [Google Scholar] [CrossRef] [PubMed]
- Peydayesh, M.; Mezzenga, R. The circular economy of water across the six Continents. Chem. Soc. Rev. 2024, 53, 4333–4348. [Google Scholar] [CrossRef]
- Dragomir, V.D.; Dumitru, M. The state of the research on circular economy in the European Union: A bibliometric review. Clean. Waste Syst. 2024, 7, 100127. [Google Scholar] [CrossRef]
- Fernandes, E.; Cunha Marques, R. Review of Water Reuse from a Circular Economy Perspective. Water 2023, 15, 848. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Capodaglio, A.G.; Angelakis, A.N. Insights into Global Water Reuse Opportunities. Sustainability 2023, 15, 13007. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Urban Wastewater Mining for Circular Resource Recovery: Approaches and Technology Analysis. Water 2023, 15, 3967. [Google Scholar] [CrossRef]
- Soo, A.; Kim, J.; Shon, H.K. Technologies for the wastewater circular economy—A review. Desal. Water Treat. 2024, 317, 100205. [Google Scholar] [CrossRef]
- Dhokpande, S.R.; Deshmukh, S.M.; Khandekar, A.; Sankhe, A. A review outlook on methods for removal of heavy metal ions from wastewater. Sep. Purif. Technol. 2024, 350, 127868. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, G.; Jiao, Y.; Quana, B.; Lua, W.; Su, P.; Tang, Y.; Wang, J.; Wu, M.; Xiao, N.; et al. Critical analysis on the transformation and upgrading strategy of Chinese municipal wastewater treatment plants: Towards sustainable water remediation and zero carbon emissions. Sci. Total Environ. 2023, 896, 165201. [Google Scholar] [CrossRef]
- Sniatała, B.; Al-Hazmi, H.E.; Sobotka, D.; Zhai, J.; Mąkinia, J. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. Sci. Total Environ. 2024, 937, 173446. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Mavukkandy, M.O.; Giwa, A.; Elektorowicz, M.; Katsou, E.; Khelifi, O.; Naddeo, V.; Hasan, S.W. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. npj Clean Water 2022, 5, 12. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Tenório, J.A.S.; Espinosa, D.C.R. Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art. Processes 2023, 11, 1256. [Google Scholar] [CrossRef]
- Addagada, L.; Goel, M.; Shahid, M.K.; Prabhu, S.V.; Chand, S.; Sahoo, N.K.; Rout, P.R. Tricks and tracks in resource recovery from wastewater using bio-electrochemical systems (BES): A systematic review on recent advancements and future directions. J. Water Process Eng. 2023, 56, 104580. [Google Scholar] [CrossRef]
- Davis, M.L. Water and Wastewater Engineering: Design Principles and Practice, 2nd ed.; McGraw Hill: New York, NY, USA, 2019. [Google Scholar]
- Vinayagam, V.; Sikarwar, D.; Das, S.; Pugazhendhi, A. Envisioning the innovative approaches to achieve circular economy in the water and wastewater sector. Environ. Res. 2024, 241, 117663. [Google Scholar] [CrossRef] [PubMed]
- Burn, D.H.; McBean, E.A. Optimization modelling of water quality in an uncertain environment. Water Resour. Res. 1985, 21, 934–940. [Google Scholar] [CrossRef]
- Rehana, S.; Rajulapati, C.R.; Ghosh, S.; Karmakar, S.; Mujumdar, P. Uncertainty Quantification in Water Resource Systems Modeling: Case Studies from India. Water 2020, 12, 1793. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters—Design, Innovation, and Discovery; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Taguchi, G.; Chowdhury, S.; Wu, Y. Quality Engineering Handbook; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kumar, R.; Maurya, A.; Raj, A. Emerging technological solutions for the management of paper mill wastewater: Treatment, nutrient recovery and fourth industrial revolution (IR 4.0). J. Water Process Eng. 2023, 53, 103715. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Lu, L.; Brenneman, W.; De Mast, J.; Faltin, F.; Freeman, L.; Guthrie, W.; Hoerl, R.; Jensen, W.; Jones-Farmer, A.; et al. Statistical engineering—Part 1: Past and present. Qual. Eng. 2022, 34, 426–445. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Lu, L.; Brenneman, W.; De Mast, J.; Faltin, F.; Freeman, L.; Guthrie, W.; Hoerl, R.; Jensen, W.; Jones-Farmer, A.; et al. Statistical engineering—Part 2: Future. Qual. Eng. 2022, 34, 446–467. [Google Scholar] [CrossRef]
- Schall, S. Statistical engineering: Synergies with established engineering disciplines. Qual. Eng. 2022, 34, 468–472. [Google Scholar] [CrossRef]
- Chugani, N.; Kumar, V.; Garza-Reyes, J.A.; Rocha-Lona, L.; Upadhyay, A. Investigating the green impact of lean, six sigma and lean six sigma: A systematic literature review. Int. J. Lean Six Sigma 2017, 8, 7–32. [Google Scholar] [CrossRef]
- Yadav, Y.; Kaswan, M.S.; Gahlot, P.; Duhan, R.K.; Garza-Reyes, J.A.; Rathi, R.; Chaudhary, R.; Yadav, G. Green Lean Six Sigma for sustainability improvement: A systematic review and future research agenda. Int. J. Lean Six Sigma 2023, 14, 759–989. [Google Scholar] [CrossRef]
- Yadav, S.; Samadhiya, A.; Kumar, A.; Majumdar, A.; Garza-Reyes, J.A.; Luthra, S. Achieving the sustainable development goals through net zero emissions: Innovation-driven strategies for transitioning from incremental to radical lean, green and digital technologies. Resour. Conserv. Rec. 2023, 197, 107094. [Google Scholar] [CrossRef]
- Elemure, I.; Dhakal, H.N.; Leseure, M.; Radulovic, J. Integration of Lean Green and Sustainability in Manufacturing: A Review on Current State and Future Perspectives. Sustainability 2023, 15, 10261. [Google Scholar] [CrossRef]
- Abou-Shady, A. Recycling of polluted wastewater for agriculture purpose using electrodialysis: Perspective for large scale application. Chem. Eng. J. 2017, 323, 1–18. [Google Scholar] [CrossRef]
- Sousa, M.R.S.; Lora-García, J.; López-Pérez, M.-F.; Santafé-Moros, A.; Gozálvez-Zafrilla, J.M. Operating Conditions Optimization via the Taguchi Method to Remove Colloidal Substances from Recycled Paper and Cardboard Production Wastewater. Membranes 2020, 10, 170. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods, Experimental Design, and Scientific Inference; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Stewart-Oaten, A.; Bence, J.R.; Osenberg, C.W. Assessing effects of unreplicated perturbations: No simple solutions. Ecology 1992, 73, 1396. [Google Scholar] [CrossRef]
- Pagliari, P.H.; Ranaivoson, A.Z.; Strock, J.S. Options for statistical analysis of unreplicated paired design drainage experiments. Agr. Water Manag. 2021, 244, 106604. [Google Scholar] [CrossRef]
- Pilar Callao, M. Multivariate experimental design in environmental analysis. Trends Anal. Chem. 2014, 62, 86–92. [Google Scholar] [CrossRef]
- Hamada, M.; Balakrishnan, N. Analyzing unreplicated factorial experiments: A review with some new proposals. Stat. Sin. 1998, 8, 1–41. [Google Scholar]
- Stone, R.A.; Veevers, A. The Taguchi influence on designed experiments. J. Chemometr. 1994, 8, 103–110. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Tech. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Carlson, R.; Nordahl, A.; Barth, T.; Myklebust, R. An approach to evaluating screening experiments when several responses are measured. Chemom. Intell. Lab. Syst. 1991, 12, 237–255. [Google Scholar] [CrossRef]
- Besseris, G.J. Concurrent multiresponse multifactorial screening of an electrodialysis process of polluted wastewater using robust non-linear Taguchi profiling. Chemom. Intell. Lab. Syst. 2020, 200, 103997. [Google Scholar] [CrossRef]
- Breiman, L. Statistical modeling: The two cultures. Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Shafer, G.A. Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Lenth, R.V. Quick and easy analysis of unreplicated factorials. Technometrics 1989, 31, 469–473. [Google Scholar] [CrossRef]
- Ye, K.Q.; Hamada, M.J. Critical values of the Lenth method for unreplicated factorial designs. Qual. Tech. 2000, 32, 57–66. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley-Interscience: New York, NY, USA, 1998. [Google Scholar]
- Singha, S.; Pasupuleti, S.; Singha, S.S.; Singh, R. Prediction of groundwater quality using efficient machine learning technique. Chemosphere 2021, 276, 130265. [Google Scholar] [CrossRef]
- Malviya, A.; Jaspal, D. Artificial intelligence as an upcoming technology in wastewater treatment: A comprehensive review. Environ. Technol. Rev. 2021, 10, 177–187. [Google Scholar] [CrossRef]
- Hanoon, M.S.; Ahmed, A.N.; Fai, C.M.; Birima, A.H.; Razzaq, A.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Application of artificial intelligence models for modeling water quality in groundwater: Comprehensive review, evaluation and future trends. Water Air Soil Poll. 2021, 232, 411. [Google Scholar] [CrossRef]
- George, M.; Blackwell, D.; Rajan, D. Lean Six Sigma in the Age of Artificial Intelligence: Harnessing the Power of the Fourth Industrial Revolution; McGraw-Hill: New York, NY, USA, 2019. [Google Scholar]
- Besseris, G. Micro-Clustering and Rank-Learning Profiling of a Small Water-Quality Multi-Index Dataset to Improve a Recycling Process. Water 2021, 13, 2469. [Google Scholar] [CrossRef]
- Besseris, G. Wastewater Quality Screening Using Affinity Propagation Clustering and Entropic Methods for Small Saturated Nonlinear Orthogonal Datasets. Water 2022, 14, 1238. [Google Scholar] [CrossRef]
- Besseris, G. Datacentric Similarity Matching of Emergent Stigmergic Clustering to Fractional Factorial Vectoring: A Case for Leaner-and-Greener Wastewater Recycling. Appl. Sci. 2023, 13, 11926. [Google Scholar] [CrossRef]
- Denceux, T. Decision-making with belief functions: A review. Int. J. Approx. Reason. 2019, 109, 87–110. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Dempster, A.P. A generalization of Bayesian inference. J. Royal Stat. Soc. B 1968, 30, 205–247. [Google Scholar] [CrossRef]
- Dempster, A.P. New methods for reasoning towards posterior distributions based on sample data. Ann. Math. Stat. 1966, 37, 355–374. [Google Scholar] [CrossRef]
- Shafer, G. Constructive decision theory. Int. J. Approx. Reason. 2016, 79, 45–62. [Google Scholar] [CrossRef]
- Shafer, G. A mathematical theory of evidence turns 40. Int. J. Approx. Reason. 2016, 79, 7–25. [Google Scholar] [CrossRef]
- Shafer, G. Dempster’s rule of combination. Int. J. Approx. Reason. 2016, 79, 26–40. [Google Scholar] [CrossRef]
- Smets, P. The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 447–458. [Google Scholar] [CrossRef]
- Smets, P.; Kennes, R. The transferable belief model, Artif. Intell. 1994, 66, 191–243. [Google Scholar]
- Smets, P. Analyzing the combination of conflicting belief functions. Inform. Fusion 2007, 8, 387–412. [Google Scholar] [CrossRef]
- Yager, R.R. Decision making under Dempster-Shafer uncertainties. Int. J. General Sys. 1992, 20, 233–245. [Google Scholar] [CrossRef]
- Yager, R.R. Decision making using minimization of regret, Int. J. Approx. Reason. 2004, 36, 109–128. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comp. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- R Core Team. R (Version 4.3.1): A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 16 June 2023).
- Hintze, J.L.; Nelson, R.D. Violin plots: A box plot-density trace synergism. Am. Stat. 1998, 52, 181–184. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Ruts, I.; Tukey, J.W. The bagplot: A bivariate boxplot. Am. Stat. 1999, 53, 382–387. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Representation and combination of uncertainty with belief functions and possibility measures. Comp. Intel. 1988, 4, 244–264. [Google Scholar] [CrossRef]
- Murphy, C. Combining belief functions when evidence conflicts. Decision Support Syst. 2000, 29, 1–9. [Google Scholar] [CrossRef]
QC1 vs. QC2 | Correlation | Count | Lower C.I. | Upper C.I. |
---|---|---|---|---|
Jp-COD | −0.219 | 27 | −0.553 | 0.175 |
SFD-COD | −0.388 | 27 | −0.669 | −0.010 |
SFD-Jp | 0.830 | 27 | 0.658 | 0.920 |
Quality Characteristic | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Factorial Effects | Jp | COD | SFD | ||||||||
Replicate # | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | IER | EER |
A | 7.72 | 8.02 | 7.41 | 0.73 | 0.60 | 0.67 | 2.74 | 1.68 | 4.08 | 2.20 | 4.87 |
A2 | 3.53 | 2.41 | 0.95 | 0.28 | 0.07 | 0.08 | 0.89 | 0.06 | 1.13 | 2.20 | 4.87 |
B | 0.36 | 0.42 | 0.77 | 1.38 | 0.83 | 1.12 | 1.04 | 0.65 | 0.85 | 2.20 | 4.87 |
B2 | 1.14 | 0.45 | 0.58 | 0.02 | 0.13 | 0.27 | 0.48 | 0.68 | 0.03 | 2.20 | 4.87 |
C | 0.13 | 3.49 | 0.12 | 0.37 | 0.24 | 0.01 | 0.67 | 0.74 | 0.83 | 2.20 | 4.87 |
C2 | 0.45 | 0.89 | 0.75 | 0.60 | 0.74 | 0.67 | 0.34 | 0.21 | 0.51 | 2.20 | 4.87 |
D | 6.71 | 7.01 | 6.55 | 2.00 | 1.64 | 1.67 | 3.16 | 1.81 | 4.10 | 2.20 | 4.87 |
D2 | 0.88 | 0.15 | 0.38 | 0.76 | 0.74 | 0.80 | 0.48 | 0.32 | 0.16 | 2.20 | 4.87 |
Characteristic response: average permeate flux (Jp) | |||||||
Model type | Status | RMSE | MSE | R2 | MAE | MAPE % | Hyperparameters |
Linear regression | Trained | 6.29 | 39.58 | 0.91 | 4.90 | 12.80 | Terms—quadratic |
SVM | Trained | 8.07 | 65.11 | 0.86 | 6.73 | 17.20 | Kernel function—quadratic Standardize data—yes |
SVM | Trained | 6.43 | 41.31 | 0.91 | 5.03 | 12.69 | Optimized hyperparameters Kernel function—cubic Box constraint—8.2907 Epsilon—0.35806; standardize data—yes |
Characteristic response: COD rejection rate (COD) | |||||||
Model type | Status | RMSE | MSE | R2 | MAE | MAPE % | Hyperparameters |
Linear regression | Trained | 1.90 | 3.61 | 0.91 | 1.61 | 3.76 | Terms—quadratic |
SVM | Trained | 3.42 | 11.70 | 0.71 | 2.65 | 6.45 | Kernel function—quadratic Standardize data—yes |
Characteristic response: cumulative flux decline (SFD) | |||||||
Model type | Status | RMSE | MSE | R2 | MAE | MAPE % | Hyperparameters |
Linear regression | Trained | 0.63 | 0.40 | 0.91 | 0.48 | 9.24 | Terms—quadratic |
SVM | Trained | 0.73 | 0.53 | 0.88 | 0.61 | 11.35 | Kernel function—quadratic Standardize data—yes |
Quality Characteristic | ||||||
---|---|---|---|---|---|---|
Jp | COD | SFD | ||||
Coefficients | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value |
Intercept | 57.37 | <0.001 | 38.71 | <0.001 | 5.53 | <0.001 |
A | 18.04 | <0.001 | 2.01 | <0.001 | 1.58 | <0.001 |
A2 | −8.83 | <0.001 | −0.4 | 0.461 | 0.54 | 0.014 |
B | −0.18 | 0.886 | 3.29 | <0.001 | −0.51 | <0.001 |
B2 | −290 | 0.191 | 0.79 | 0.155 | −0.49 | 0.024 |
C | −2.62 | 0.047 | −0.56 | 0.083 | 0.46 | <0.001 |
C2 | 2.85 | 0.198 | 3.58 | <0.001 | 0.11 | 0.591 |
D | 15.81 | <0.001 | −5.32 | <0.001 | 1.7 | <0.001 |
D2 | 1.54 | 0.479 | 4.07 | <0.001 | 0.36 | 0.09 |
Multiple-Adjusted R2 | 0.94 | 0.96 | 0.95 |
Discounting Rate | Mass Function Element | Dempster–Shafer Rule | Yager’s Rule | Smets Rule | Dubois–Prade Rule |
---|---|---|---|---|---|
0.5 | 1 | 0 | 0 | 1 | 0 |
2 | NaN | 0 | 0 | 0 | |
3 | NaN | 0 | 0 | 0 | |
4 | NaN | 1 | 0 | 1 | |
0.9 | 1 | 0 | 0 | 1 | 0 |
2 | NaN | 0 | 0 | 0 | |
3 | NaN | 0 | 0 | 0 | |
4 | NaN | 1 | 0 | 1 |
Mass Function Element | Dempster–Shafer Rule | Yager’s Rule | Smets Rule | Dubois–Prade Rule |
---|---|---|---|---|
1 | 0 | 0 | 1 | 0 |
2 | NaN | 0 | 0 | 0 |
3 | NaN | 0 | 0 | 0 |
4 | NaN | 1 | 0 | 1 |
Discounting Rate | Mass Function Element | Dempster–Shafer Rule | Yager’s Rule | Smets Rule | Dubois–Prade Rule |
---|---|---|---|---|---|
0.5 | 1 | 0 | 0 | 0.335 | 0 |
2 | 0 | 0 | 0 | 0 | |
3 | 1 | 0.665 | 0.665 | 0.665 | |
4 | 0 | 0.335 | 0 | 0.335 | |
0.9 | 1 | 0 | 0 | 0.603 | 0 |
2 | 0 | 0 | 0 | 0 | |
3 | 1 | 0.397 | 0.397 | 0.397 | |
4 | 0 | 0.603 | 0 | 0.603 |
Discounting Rate | Mass Function Element | Dempster–Shafer Rule | Yager’s Rule | Smets Rule | Dubois–Prade Rule |
---|---|---|---|---|---|
0.5 | 1 | 0 | 0 | 0.297 | 0 |
2 | 1 | 0.835 | 0.703 | 0.835 | |
3 | 0 | 0.165 | 0 | 0.165 | |
4 | 0 | 0 | 0 | 0 | |
0.9 | 1 | 0 | 0 | 0.165 | 0 |
2 | 1 | 0.703 | 0.835 | 0.703 | |
3 | 0 | 0 | 0 | 0 | |
4 | 0 | 0.297 | 0 | 0.297 |
Kolmogorov–Smirnov Test a | Shapiro–Wilk Test | |||||
---|---|---|---|---|---|---|
Statistic | Df | Sig. | Statistic | Df | Sig. | |
Jp | 0.096 | 27 | 0.200 * | 0.980 | 27 | 0.860 |
COD | 0.082 | 27 | 0.200 * | 0.968 | 27 | 0.549 |
SFD | 0.124 | 27 | 0.200 * | 0.947 | 27 | 0.182 |
Skewness | Kurtosis | |||
---|---|---|---|---|
Statistic | Std. Error | Statistic | Std. Error | |
Jp | 0.174 | 0.448 | −0.447 | 0.872 |
COD | −0.007 | 0.448 | −0.844 | 0.872 |
SFD | 0.293 | 0.448 | −1.043 | 0.872 |
A | Kolmogorov–Smirnov Test a | Shapiro–Wilk Test | |||||
---|---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | ||
Jp | −1 | 0.148 | 9 | 0.200 * | 0.932 | 9 | 0.498 |
0 | 0.205 | 9 | 0.200 * | 0.915 | 9 | 0.350 | |
1 | 0.224 | 9 | 0.200 * | 0.885 | 9 | 0.178 | |
COD | −1 | 0.154 | 9 | 0.200 * | 0.957 | 9 | 0.769 |
0 | 0.270 | 9 | 0.058 | 0.837 | 9 | 0.053 | |
1 | 0.302 | 9 | 0.017 | 0.803 | 9 | 0.022 | |
SFD | −1 | 0.192 | 9 | 0.200 * | 0.871 | 9 | 0.125 |
0 | 0.267 | 9 | 0.063 | 0.851 | 9 | 0.077 | |
1 | 0.233 | 9 | 0.174 | 0.872 | 9 | 0.130 |
B | Kolmogorov–Smirnov Test a | Shapiro–Wilk Test | |||||
---|---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | ||
Jp | −1 | 0.282 | 9 | 0.037 | 0.790 | 9 | 0.016 |
0 | 0.239 | 9 | 0.146 | 0.817 | 9 | 0.032 | |
1 | 0.219 | 9 | 0.200 * | 0.904 | 9 | 0.275 | |
COD | −1 | 0.162 | 9 | 0.200 * | 0.932 | 9 | 0.498 |
0 | 0.186 | 9 | 0.200 * | 0.922 | 9 | 0.413 | |
1 | 0.162 | 9 | 0.200 * | 0.906 | 9 | 0.291 | |
SFD | −1 | 0.295 | 9 | 0.023 | 0.735 | 9 | 0.004 |
0 | 0.258 | 9 | 0.085 | 0.792 | 9 | 0.017 | |
1 | 0.169 | 9 | 0.200 * | 0.918 | 9 | 0.377 |
C | Kolmogorov–Smirnov Test a | Shapiro–Wilk Test | |||||
---|---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | ||
Jp | −1 | 0.168 | 9 | 0.200 * | 0.906 | 9 | 0.288 |
0 | 0.188 | 9 | 0.200 * | 0.877 | 9 | 0.146 | |
1 | 0.212 | 9 | 0.200 * | 0.892 | 9 | 0.210 | |
COD | −1 | 0.244 | 9 | 0.131 | 0.939 | 9 | 0.570 |
0 | 0.287 | 9 | 0.031 | 0.767 | 9 | 0.009 | |
1 | 0.315 | 9 | 0.011 | 0.757 | 9 | 0.007 | |
SFD | −1 | 0.284 | 9 | 0.035 | 0.782 | 9 | 0.013 |
0 | 0.208 | 9 | 0.200 * | 0.907 | 9 | 0.298 | |
1 | 0.210 | 9 | 0.200 * | 0.901 | 9 | 0.259 |
D | Kolmogorov–Smirnov Test a | Shapiro–Wilk Test | |||||
---|---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | ||
Jp | −1 | 0.219 | 9 | 0.200 * | 0.820 | 9 | 0.035 |
0 | 0.220 | 9 | 0.200 * | 0.874 | 9 | 0.137 | |
1 | 0.190 | 9 | 0.200 * | 0.913 | 9 | 0.334 | |
COD | −1 | 0.124 | 9 | 0.200 * | 0.970 | 9 | 0.897 |
0 | 0.180 | 9 | 0.200 * | 0.930 | 9 | 0.482 | |
1 | 0.327 | 9 | 0.006 | 0.809 | 9 | 0.026 | |
SFD | −1 | 0.193 | 9 | 0.200 * | 0.901 | 9 | 0.256 |
0 | 0.312 | 9 | 0.012 | 0.774 | 9 | 0.010 | |
1 | 0.185 | 9 | 0.200 * | 0.903 | 9 | 0.269 |
Enter Factor | df2 | Sig. F Change | Akaike Information Criterion | Amemiya Prediction Criterion | Mallows’ Prediction Criterion | Schwarz Bayesian Criterion | Durbin–Watson Statistic | VIF Collinearity |
---|---|---|---|---|---|---|---|---|
1 | 25 | <0.001 | 148.483 | 0.572 | 94.014 | 151.075 | 1.0 a | |
2 | 24 | <0.001 | 108.319 | 0.129 | 3.549 | 112.207 | 2.067 | 1.0 b |
Enter Factor | df2 | Sig. F Change | Akaike Information Criterion | Amemiya Prediction Criterion | Mallows’ Prediction Criterion | Schwarz Bayesian Criterion | Durbin–Watson Statistic | VIF Collinearity |
---|---|---|---|---|---|---|---|---|
1 | 25 | <0.001 | 81.944 | 0.566 | 27.376 | 84.535 | 1.0 a | |
2 | 24 | <0.001 | 70.077 | 0.365 | 9.142 | 73.964 | 1.0 b | |
3 | 23 | 0.011 | 64.294 | 0.295 | 3.594 | 69.478 | 3.307 | 1.0 c |
Enter Factor | df2 | Sig. F Change | Akaike Information Criterion | Amemiya Prediction Criterion | Mallows’ Prediction Criterion | Schwarz Bayesian Criterion | Durbin–Watson Statistic | VIF Collinearity |
---|---|---|---|---|---|---|---|---|
1 | 25 | <0.001 | 26.290 | 0.628 | 138.756 | 28.882 | 1.0a | |
2 | 24 | <0.001 | −6.904 | 0.184 | 22.930 | −3.017 | 1.0 b | |
3 | 23 | 0.007 | −13.647 | 0.143 | 12.778 | −8.464 | 1.0 c | |
4 | 22 | 0.005 | −21.576 | 0.107 | 5.000 | −15.097 | 1.939 | 1.0 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besseris, G. Non-Linear Saturated Multi-Objective Pseudo-Screening Using Support Vector Machine Learning, Pareto Front, and Belief Functions: Improving Wastewater Recycling Quality. Appl. Sci. 2024, 14, 9971. https://doi.org/10.3390/app14219971
Besseris G. Non-Linear Saturated Multi-Objective Pseudo-Screening Using Support Vector Machine Learning, Pareto Front, and Belief Functions: Improving Wastewater Recycling Quality. Applied Sciences. 2024; 14(21):9971. https://doi.org/10.3390/app14219971
Chicago/Turabian StyleBesseris, George. 2024. "Non-Linear Saturated Multi-Objective Pseudo-Screening Using Support Vector Machine Learning, Pareto Front, and Belief Functions: Improving Wastewater Recycling Quality" Applied Sciences 14, no. 21: 9971. https://doi.org/10.3390/app14219971
APA StyleBesseris, G. (2024). Non-Linear Saturated Multi-Objective Pseudo-Screening Using Support Vector Machine Learning, Pareto Front, and Belief Functions: Improving Wastewater Recycling Quality. Applied Sciences, 14(21), 9971. https://doi.org/10.3390/app14219971