Dynamic Analysis of Upper- and Lower-Extremity Performance During Take-Offs and Landings in High-Wall Climbing: Effects of a Plyometric and Strength Training Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusions of Participants
2.2. Exclusions of Participants
2.3. Study Settings and Design
2.4. Intervention
2.5. Research Variables and Tools
2.5.1. Research Variables
2.5.2. Research Tools
2.5.3. Hand Grip Test
2.5.4. Upper-Extremity Muscle Strength Test
2.5.5. Lower-Extremity Take-Off Test
2.5.6. Lower-Extremity Landing Test
2.6. Statistical Analysis
3. Results
3.1. Analysis of Muscle Strength of Upper Body
3.2. Analysis of Lower-Body Muscle Strength
3.2.1. Analysis of Take-Off Dynamics
3.2.2. Analysis of Landing Dynamics
4. Discussion
4.1. Plyometric Training Benefits
4.2. Upper-Extremity Muscle Strength for Climbing High Walls
4.3. Lower-Extremity Muscle Strength for High Wall Take-Off
4.4. Lower-Extremity Muscle Strength for High-Wall Landing
4.5. Limitations
4.6. Recommendations for Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arntz, F.; Mkaouer, B.; Markov, A.; Schoenfeld, B.J.; Moran, J.; Ramirez-Campillo, R.; Behrens, M.; Baumert, P.; Erskine, R.M.; Hauser, L.; et al. Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis. Front. Physiol. 2022, 13, 888464. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, F.; Ünver, E.; Özçadırcı, A.; Cinemre, Ş.A.; Kınıklı, G. Countermovement push-up test to assess the upper extremity force-time characteristics in swimmers during a macrocycle. PLoS ONE 2023, 18, e0289573. [Google Scholar] [CrossRef] [PubMed]
- Sas-Nowosielski, K.; Kandzia, K. Acute Effects of Post-Activation Performance Enhancement of 5RM Weighted Pull-Ups and One Arm Pull-Ups on Specific Upper Body Climbing Performance. J. Hum. Kinet. 2022, 84, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, Z.; Xie, L.; He, J.; Ji, H.; Huang, W.; Li, D.; Zhou, Y.; Sun, J. Maximizing plyometric training for adolescents: A meta-analysis of ground contact frequency and overall intervention time on jumping ability: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 21222. [Google Scholar] [CrossRef] [PubMed]
- Baláš, J.; Gajdošík, J.; Giles, D.; Fryer, S.; Krupková, D.; Brtník, T.; Feldmann, A. Isolated finger flexor vs. exhaustive whole-body climbing tests? How to assess endurance in sport climbers? Eur. J. Appl. Physiol. 2021, 121, 1337–1348. [Google Scholar] [CrossRef]
- Balas, J.; Pecha, O.; Martin, A.; Cochrane, D. Hand–arm strength and endurance as predictors of climbing performance. Eur. J. Sport Sci. 2012, 12, 16–25. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Langer, K.; Scott, S.; Michailov, M.L.; Gronhaug, G.; Baláš, J.; Solstad, T.E.J.; Andersen, V. The Connection Between Resistance Training, Climbing Performance, and Injury Prevention. Sports Med. Open 2024, 10, 10. [Google Scholar] [CrossRef]
- D’Emanuele, S.; Maffiuletti, N.A.; Tarperi, C.; Rainoldi, A.; Schena, F.; Boccia, G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front. Hum. Neurosci. 2021, 15, 701916. [Google Scholar] [CrossRef]
- Donahue, P.T.; Wilson, S.J.; Williams, C.C.; Hill, C.M.; Garner, J.C. Comparison of Countermovement and Squat Jumps Performance in Recreationally Trained Males. Int. J. Exerc. Sci. 2021, 14, 462–472. [Google Scholar]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase Characteristics of the Countermovement Jump Force-Time Curve: A Comparison of Athletes by Jumping Ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef]
- McMahon, J.; Suchomel, T.; Lake, J.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Philpott, L.K.; Forrester, S.E.; van Lopik, K.A.J.; Hayward, S.; Conway, P.P.; West, A.A. Countermovement jump performance in elite male and female sprinters and high jumpers. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2020, 235, 131–138. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhou, H.; Quan, W.; Hu, Q.; Baker, J.S.; Gu, Y. Ground Reaction Force Differences between Bionic Shoes and Neutral Running Shoes in Recreational Male Runners before and after a 5 km Run. Int. J. Environ. Res. Public Health 2021, 18, 9787. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Gan, K.B.; Rambely, A.; Gopal, K.; Ariffin, M.S.; Abd Shattar, N. Relationship between angle and peak vertical ground reaction force estimation in parachute landing fall among army parachutists using mathematical modelling. AEJ—Alex. Eng. J. 2021, 61, 5413–5426. [Google Scholar] [CrossRef]
- Niu, W.; Feng, T.; Jiang, C.; Zhang, M. Peak vertical ground reaction force during two-leg landing: A systematic review and mathematical modeling. Biomed. Res. Int. 2014, 2014, 126860. [Google Scholar] [CrossRef]
- Ericksen, H.M.; Gribble, P.A.; Pfile, K.R.; Pietrosimone, B.G. Different modes of feedback and peak vertical ground reaction force during jump landing: A systematic review. J. Athl. Train. 2013, 48, 685–695. [Google Scholar] [CrossRef]
- Molla, R.Y.; Fatahi, A.; Khezri, D.; Ceylan, H.I.; Nobari, H. Relationship between impulse and kinetic variables during jumping and landing in volleyball players. BMC Musculoskelet. Disord. 2023, 24, 619. [Google Scholar] [CrossRef]
- Gay, L.R. Educational Research Competencies for Analysis and Application; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Martínez-Mesa, J.; González-Chica, D.A.; Bastos, J.L.; Bonamigo, R.R.; Duquia, R.P. Sample size: How many participants do I need in my research? An. Bras. Dermatol. 2014, 89, 609–615. [Google Scholar] [CrossRef]
- Reichardt, C.S.; Little, T.D. Quasi-Experimentation: A Guide to Design and Analysis; The Guilford Press: New York, NY, USA, 2019. [Google Scholar]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef]
- Vigouroux, L.; Devise, M. Pull-Up Performance Is Affected Differently by the Muscle Contraction Regimens Practiced during Training among Climbers. Bioengineering 2024, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Feasibility and Effects of an Immersive Virtual Reality Exergame Program on Physical Functions in Institutionalized Older Adults: A Randomized Clinical Trial. Sensors 2022, 22, 6742. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Soh, K.G.; Abdullah, B.B.; Huang, D.; Xu, F.; Bashir, M.; Zhang, D. Effects of plyometric training on health-related physical fitness in untrained participants: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 11272. [Google Scholar] [CrossRef] [PubMed]
- Kons, R.L.; Orssatto, L.B.R.; Ache-Dias, J.; De Pauw, K.; Meeusen, R.; Trajano, G.S.; Dal Pupo, J.; Detanico, D. Effects of Plyometric Training on Physical Performance: An Umbrella Review. Sports Med. Open 2023, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Marković, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007, 41, 349–355. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; García-Hermoso, A.; Moran, J.; Chaabene, H.; Negra, Y.; Scanlan, A.T. The effects of plyometric jump training on physical fitness attributes in basketball players: A meta-analysis. J. Sport Health Sci. 2022, 11, 656–670. [Google Scholar] [CrossRef]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 975–986. [Google Scholar] [CrossRef]
- Kapsis, D.P.; Tsoukos, A.; Psarraki, M.P.; Douda, H.T.; Smilios, I.; Bogdanis, G.C. Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports 2022, 10, 7. [Google Scholar] [CrossRef]
- Cigerci, A.E.; Genc, H. The effect of strength training with different frequency on untrained university students. Phys. Educ. Stud. 2020, 24, 186–193. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef]
- Triplett, N.T.; Haff, G.G. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Lee, C.H.; Sun, T.L. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. J. Physiol. Anthropol. 2018, 37, 27. [Google Scholar] [CrossRef]
- Bartolomei, S.; Nigro, F.; Ruggeri, S.; Malagoli Lanzoni, I.; Ciacci, S.; Merni, F.; Sadres, E.; Hoffman, J.R.; Semprini, G. Comparison Between Bench Press Throw and Ballistic Push-up Tests to Assess Upper-Body Power in Trained Individuals. J. Strength Cond. Res. 2018, 32, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 1973, 33, 107–112. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Davies, G.; Riemann, B.; Manske, R. Current concepts of plyometric exercise. Int. J. Sports Phys. Ther. 2015, 10, 760–786. [Google Scholar] [PubMed]
- Seiberl, W.; Hahn, D.; Power, G.A.; Fletcher, J.R.; Siebert, T. Editorial: The Stretch-Shortening Cycle of Active Muscle and Muscle-Tendon Complex: What, Why and How It Increases Muscle Performance? Front. Physiol. 2021, 12, 693141. [Google Scholar] [CrossRef]
- Ramírez-delaCruz, M.; Bravo-Sánchez, A.; Esteban-García, P.; Jiménez, F.; Abián-Vicén, J. Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-analysis. Sports Med. Open 2022, 8, 40. [Google Scholar] [CrossRef]
- Verma, C.V.; Subramanium, L.; Krishnan, V. Effect of plyometric training on vertical jump height in high school basketball players: Randomised control trial. Int. J. Med. Res. Health Sci. 2015, 4, 7–12. [Google Scholar] [CrossRef]
- Strate, M.; Stien, N.; Saeterbakken, A.H.; Andersen, V. The effects of assisted and resisted plyometric training on jump height and sprint performance among physically active females. Eur. J. Sport Sci. 2022, 22, 1569–1576. [Google Scholar] [CrossRef]
- Collins, K.S.; Bradley, A.P.; Christensen, B.K.; Waldera, R.W.; Klawitter, L.A.; Ogren, L.; Salatto, R.W. Bench Press Range-of-Motion and Velocity-based Repetition Control: Effects on Ballistic Push-up Performance in Males. Int. J. Exerc. Sci. 2024, 17, 38–53. [Google Scholar]
- Marquina Nieto, M.; Rivilla-García, J.; de la Rubia, A.; Lorenzo-Calvo, J. Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability. Int. J. Environ. Res. Public Health 2022, 19, 13739. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hoffman, J.R.; Sadres, E.; Bartolomei, S.; Muddle, T.W.D.; Fukuda, D.H.; Stout, J.R. Effects of Different Relative Loads on Power Performance During the Ballistic Push-up. J. Strength Cond. Res. 2017, 31, 3411–3416. [Google Scholar] [CrossRef] [PubMed]
- Giles, D.; Chidley, J.B.; Taylor, N.; Torr, O.; Hadley, J.; Randall, T.; Fryer, S. The Determination of Finger-Flexor Critical Force in Rock Climbers. Int. J. Sports Physiol. Perform. 2019, 14, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.; Simon, C.; Wiemeyer, J. Physical performance testing in climbing-A systematic review. Front. Sports Act. Living 2023, 5, 1130812. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Vigouroux, L.; Devise, M.; Cartier, T.; Aubert, C.; Berton, E. Performing pull-ups with small climbing holds influences grip and biomechanical arm action. J. Sports Sci. 2019, 37, 886–894. [Google Scholar] [CrossRef]
- Garavaglia, L.; Romanò, J.; Lazzari, F.; Pittaccio, S. Biomechanical characterisation of the pull-up exercise. Sport Sci. Health 2024, 20, 221–234. [Google Scholar] [CrossRef]
- Berry, H.R.; Tate, R.J.; Conway, B.A. Transcutaneous spinal direct current stimulation induces lasting fatigue resistance and enhances explosive vertical jump performance. PLoS ONE 2017, 12, e0173846. [Google Scholar] [CrossRef]
- Dickie, J.A.; Faulkner, J.A.; Barnes, M.J.; Lark, S.D. Electromyographic analysis of muscle activation during pull-up variations. J. Electromyogr. Kinesiol. 2017, 32, 30–36. [Google Scholar] [CrossRef]
- Cabrejas, C.; Solana-Tramunt, M.; Morales, J.; Nieto, A.; Bofill, A.; Carballeira, E.; Pierantozzi, E. The Effects of an Eight-Week Integrated Functional Core and Plyometric Training Program on Young Rhythmic Gymnasts’ Explosive Strength. Int. J. Environ. Res. Public Health 2023, 20, 1041. [Google Scholar] [CrossRef]
- Macaluso, F.; Isaacs, A.W.; Myburgh, K.H. Preferential type II muscle fiber damage from plyometric exercise. J. Athl. Train. 2012, 47, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.; Vanrenterghem, J.; De Clercq, D. Understanding how an arm swing enhances performance in the vertical jump. J. Biomech. 2004, 37, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Balshaw, T.G.; Massey, G.J.; Maden-Wilkinson, T.M.; Lanza, M.B.; Folland, J.P. Effect of long-term maximum strength training on explosive strength, neural, and contractile properties. Scand. J. Med. Sci. Sports 2022, 32, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.B.; Chéour, F. Effects of Plyometric Training on Physical Fitness in Team Sport Athletes: A Systematic Review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Makino, A.; Yamaguchi, K.; Sumi, D.; Ichikawa, M.; Ohno, M.; Nagano, A.; Goto, K. Ground reaction force and electromyograms of lower limb muscles during fast walking. Front. Sports Act. Living 2022, 4, 1055302. [Google Scholar] [CrossRef]
- Liu, K.; Heise, G.D. The effect of jump-landing directions on dynamic stability. J. Appl. Biomech. 2013, 29, 634–638. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Mikulic, P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 2021, 10, 530–536. [Google Scholar] [CrossRef]
- Gambelli, C.N.; Theisen, D.; Willems, P.A.; Schepens, B. Motor Control of Landing from a Jump in Simulated Hypergravity. PLoS ONE 2015, 10, e0141574. [Google Scholar] [CrossRef]
- Milosevic, M.; Masugi, Y.; Obata, H.; Sasaki, A.; Popovic, M.R.; Nakazawa, K. Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors. Exp. Brain Res. 2019, 237, 467–476. [Google Scholar] [CrossRef]
- Myer, G.; Ford, K.; McLean, S.; Hewett, T. The effects of plyometric vs dynamic stabilization and balance training on lower extremity biomechanics. Am. J. Sports Med. 2006, 34, 445–455. [Google Scholar] [CrossRef]
Variable | EG (n = 30) M ± SD | CG (n = 30) | 95% Confidence Interval | t-Value | p-Value | |
---|---|---|---|---|---|---|
M ± SD | Lower Bound | Upper Bound | ||||
Age (years) | 21.84 ± 1.78 | 21.81 ± 1.30 | −0.55 | 0.62 | 0.117 | 0.908 |
Height (cm) | 175.4 ± 5.81 | 175.3 ± 4.35 | −1.54 | 1.78 | 0.148 | 0.883 |
Weight (kg) | 73.8 ± 4.48 | 73.7 ± 7.98 | −3.37 | 3.57 | 0.059 | 0.953 |
Content | Phase 1 (1–4 Weeks) | Phase 2 (5–8 Weeks) | Phase 3 (9–12 Weeks) | |
---|---|---|---|---|
Upper extremity | Dumbbell fly | One-handed dumbbell 6 kg, 15 reps (Set 1) One-handed dumbbell 8 kg, 10 reps (Set 2) One-handed dumbbell 10 kg, 1–5 rep (Set 3) | ||
Dead lift | Barbell + weight plates 20 kg, 15 reps (Set 1) Barbell + weight plates 30 kg, 10 reps (Set 2) Barbell + weight plates 40 kg, 1–5 rep (Set 3) | |||
Shoulder press | One-handed dumbbell 6 kg, 15 reps (Set 1) One-handed dumbbell 8 kg, 10 reps (Set 2) One-handed dumbbell 10 kg, 1–5 rep (Set 3) | |||
Pull-up | 4 reps (Set 1 to Set 3) | 4 reps (Set 1 to Set 3) | 4 reps (Set 1 to Set 3) | |
Ballistic push-up | 10 reps (Set 1 to Set 3) | 10 reps (Set 1 to Set 3) | 10 reps (Set 1 to Set 3) | |
Bench press | Barbell + weight plates (20 kg) = 30 kg, 15 reps (Set 1) Barbell + weight plates (30 kg) = 40 kg, 10 reps (Set 2) Barbell + weight plates (40 kg) = 50 kg, 1–5 rep (Set 3) | |||
Lower extremity | Tuck jumps | 10 reps (Set 1 to Set 3) | 10 reps (Set 1 to Set 3) | 10 reps (Set 1 to Set 3) |
Squat jump | 10 reps (Set 1 to Set 3) | 10 reps (Set 1 to Set 3) | 10 reps (Set 1 to Set 3) | |
1—Stepper machine, Climbmill | 20 steps/30 s (Set 1 to Set 3) | − | − | |
2—Stepper machine, Climbmill | − | 15 steps/30 s (Set 1 to Set 3) | − | |
3—Stepper machine, Climbmill | − | − | 12 steps/1 min (Set 1 to Set 3) | |
2 steps jumping, Both feet | 10 reps (Set 1 to Set 3) | 12 reps (Set 1 to Set 3) | 14 reps (Set 1 to Set 3) | |
Smith-machine squats | 30 kg, 15 reps (Set 1) 40 kg, 10 reps (Set 2) 50 kg, 1–5 rep (Set 3) | |||
Squat jumps and twists | 10 reps (Set 1 to Set 3) | 12 reps (Set 1 to Set 3) | 14 reps (Set 1 to Set 3) | |
30 cm box jump, Both feet (total for left and right) | 60 reps (Set 1 to Set 3) | 72 reps (Set 1 to Set 3) | 84 reps (Set 1 to Set 3) | |
40 cm box jump, Both feet (total for left and right) | 60 reps (Set 1 to Set 3) | − | − | |
60 cm box jump, Both feet (total for left and right) | − | 60 reps (Set 1 to Set 3) | 72 reps (Set 1 to Set 3) |
Parameters | EG (n = 30) M ± SD | CG (n = 30) M ± SD | F-Value | p-Value | η2 | |
---|---|---|---|---|---|---|
LGS (kg) | Pre | 42.9 ± 1.7 | 43.2 ± 1.3 | 35.32 * | <0.01 | 0.378 |
Post | 46.0 ± 2.2 | 43.0 ± 1.8 | ||||
RGS (kg) | Pre | 43.4 ± 1.5 | 43.4 ± 1.1 | 62.13 * | <0.01 | 0.517 |
Post | 46.6 ± 2.2 | 43.1 ± 1.6 | ||||
GRF time spent (s) | Pre | 1.04 ± 0.11 | 1.05 ± 0.11 | 285.28 * | <0.01 | 0.831 |
Post | 0.82 ± 0.09 | 1.05 ± 0.09 | ||||
GRF max (N) | Pre | 617 ± 61.8 | 621 ± 73.5 | 209.0 * | <0.01 | 0.783 |
Post | 663 ± 57.8 | 620 ± 66.9 | ||||
RFD (r) | Pre | 5210 ± 492.8 | 5264 ± 670.1 | 142.1 * | <0.01 | 0.710 |
Post | 5488 ± 468.7 | 5268 ± 665.2 | ||||
Duration of passage (s) | Pre | 0.13 ± 0.01 | 0.14 ± 0.01 | 426.5 * | <0.01 | 0.880 |
Post | 0.21 ± 0.02 | 0.13 ± 0.01 |
Parameters | EG (n = 30) M ± SD | CG (n = 30) M ± SD | F-Value | p-Value | η2 | |
---|---|---|---|---|---|---|
RFD (r) | Pre | 4344 ± 779.2 | 4184 ± 1379 | 18.88 * | <0.01 | 0.246 |
Post | 5231 ± 1687 | 4181 ± 1368 | ||||
GRF (N) | Pre | 1725 ± 97.2 | 1733 ± 73.9 | 10.15 * | <0.01 | 0.149 |
Post | 1761 ± 85.2 | 1734 ± 77.6 | ||||
GRF time spent (s) | Pre | 0.66 ± 0.09 | 0.65 ± 0.09 | 43.26 * | <0.01 | 0.427 |
Post | 0.50 ± 0.07 | 0.64 ± 0.08 | ||||
Jump height (m) | Pre | 0.49 ± 0.04 | 0.50 ± 0.03 | 24.21 * | <0.01 | 0.294 |
Post | 0.53 ± 0.05 | 0.49 ± 0.03 | ||||
Duration of passage (s) | Pre | 0.45 ± 0.08 | 0.44 ± 0.07 | 12.48 * | <0.01 | 0.177 |
Post | 0.48 ± 0.03 | 0.43 ± 0.07 |
Parameters | EG (n = 30) M ± SD | CG (n = 30) M ± SD | F-Value | p-Value | η2 |
---|---|---|---|---|---|
GRF when landing instantly (N) | |||||
Pre | 1571 ± 34.6 | 1575 ± 42.0 | 74.7 * | <0.01 | 0.563 |
Post | 1520 ± 40.3 | 1573 ± 31.3 | |||
Landing buffer time (s) | |||||
Pre | 0.55 ± 0.29 | 0.65 ± 0.35 | 36.8 * | <0.01 | 0.388 |
Post | 0.25 ± 0.99 | 0.59 ± 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, W.-L.; Yeh, M.-L.; Chuang, M.-H.; Wu, C.-E. Dynamic Analysis of Upper- and Lower-Extremity Performance During Take-Offs and Landings in High-Wall Climbing: Effects of a Plyometric and Strength Training Intervention. Appl. Sci. 2024, 14, 10137. https://doi.org/10.3390/app142210137
Shih W-L, Yeh M-L, Chuang M-H, Wu C-E. Dynamic Analysis of Upper- and Lower-Extremity Performance During Take-Offs and Landings in High-Wall Climbing: Effects of a Plyometric and Strength Training Intervention. Applied Sciences. 2024; 14(22):10137. https://doi.org/10.3390/app142210137
Chicago/Turabian StyleShih, Wen-Lung, Ming-Lang Yeh, Ming-Hsi Chuang, and Cheng-En Wu. 2024. "Dynamic Analysis of Upper- and Lower-Extremity Performance During Take-Offs and Landings in High-Wall Climbing: Effects of a Plyometric and Strength Training Intervention" Applied Sciences 14, no. 22: 10137. https://doi.org/10.3390/app142210137
APA StyleShih, W. -L., Yeh, M. -L., Chuang, M. -H., & Wu, C. -E. (2024). Dynamic Analysis of Upper- and Lower-Extremity Performance During Take-Offs and Landings in High-Wall Climbing: Effects of a Plyometric and Strength Training Intervention. Applied Sciences, 14(22), 10137. https://doi.org/10.3390/app142210137