Shape of the Sagittal Curvatures of the Spine in Young Female Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Examination Protocol
- The sacral midpoint (α angle),
- Th12-L1 intervertebral space (β angle),
- C7-Th1 intervertebral space (γ angle) [24].
- Lumbosacral angle, LA (α angle), where the reference values are within the range of 15° to 30°;
- Thoracic kyphosis curvature, TKC (β angle + γ angle), where the reference values are within the range of 30° to 40°;
- Lumbar lordosis curvature, LLC (α angle + β angle), where the reference values are within the range of 30° to 40°.
- B I—with 0° to 2° difference between Th and L,
- B II—with 0° to 2° difference between Th and L,
- B III—with 5°difference between Th and L.
- K I—normal (6–10°),
- K II—slight kyphosis (11–15°),
- K III—significant kyphosis (16–20° or more).
- L I—the norm (6–10°),
- L II—slight lordosis (11–15°),
- L III—significant lordosis (16–20° and above) [28].
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations and Future Research
5. Conclusions
- Only in terms of values of angle determining the lumbar lordosis are there differences between girls practicing volleyball and their untrained peers. Volleyball players characterized by less lumbar lordosis curvature.
- Practicing volleyball determines the frequency of correctness in the thoracic kyphosis curvature. For volleyball players, normal values of this variable were found more often. The group also determined the prevalence of lumbar lordosis normalities. Volleyball players less often have normal lumbar lordosis.
- The prevalence of body posture types and subtypes is not dependent on practicing volleyball.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masel, S.; Maciejczyk, M. Changes in countermovement jump height in elite volleyball players in two competitive seasons: Consideration on the technique of execution of the jump. Appl. Sci. 2024, 14, 4463. [Google Scholar] [CrossRef]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, 197–239. [Google Scholar] [CrossRef] [PubMed]
- Puszczalowska-Lizis, E.; Flak, K.; Biskup, M.; Zak, M. Physical activity of women after radical unilateral mastectomy and its impact on overall quality of life. Cancer Control 2020, 27, 1073274819900407. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Han, L.H.; Zhang, J.H.; Luo, S.; Hu, J.W.; Sun, K. The influence of physical activity, sedentary behavior on health-related quality of life among the general population of children and adolescents: A systematic review. PLoS ONE 2017, 12, e0187668. [Google Scholar] [CrossRef]
- Salsali, M.; Sheikhhoseini, R.; Sayyadi, P.; Hides, J.A.; Dadfar, M.; Piri, H. Association between physical activity and body posture: A systematic review and meta-analysis. BMC Public Health 2023, 23, 1670. [Google Scholar] [CrossRef]
- Betsch, M.; Furian, T.; Quack, V.; Rath, B.; Wild, M.; Rapp, W. Effects of athletic training on the spinal curvature in child athletes. Res. Sports Med. 2015, 23, 190–202. [Google Scholar] [CrossRef]
- Grabara, M. Comparison of posture among adolescent male volleyball players and non-athletes. Biol. Sport 2015, 32, 79–85. [Google Scholar] [CrossRef]
- Huang, Y.; Zhai, M.; Zhou, S.; Jin, Y.; Wen, L.; Zhao, Y.; Han, X. Influence of long-term participation in amateur sports on physical posture of teenagers. PeerJ 2022, 10, e14520. [Google Scholar] [CrossRef]
- Fujitani, R.; Jiromaru, T.; Kida, N.; Nomura, T. Effect of standing postural deviations on trunk and hip muscle activity. J. Phys. Ther. Sci. 2017, 29, 1212–1215. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Akasaka, K.; Otsudo, T.; Hall, T. Factors associated with low back pain in elite high school volleyball players. J. Phys. Ther. Sci. 2019, 31, 675–681. [Google Scholar] [CrossRef]
- Richman, E.H.; Qureshi, M.B.; Brinkman, J.C.; Tummala, S.V.; Makovicka, J.L.; Kuttner, N.P.; Pollock, J.R.; Chhabra, A. Lower back injuries in NCAA female volleyball athletes: A 5-year epidemiologic characterization. Orthop. J. Sports Med. 2021, 9, 23259671211050893. [Google Scholar] [CrossRef] [PubMed]
- Yabe, Y.; Hagiwara, Y.; Sekiguchi, T.; Momma, H.; Tsuchiya, M.; Kanazawa, K.; Itaya, N.; Yoshida, S.; Sogi, Y.; Yano, T.; et al. Association between lower back pain and lower extremity pain among young volleyball players: A cross-sectional study. Phys. Ther. Sport 2020, 43, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Wasser, J.G.; Tripp, B.; Bruner, M.L.; Bailey, D.R.; Leitz, R.S.; Zaremski, J.L.; Vincent, H.K. Volleyball-related injuries in adolescent female players: An initial report. Phys. Sportsmed. 2021, 49, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Calleja-Gonzalez, J.; Mielgo-Ayuso, J.; Sanchez-Ureña, B.; Ostojic, S.M.; Terrados, N. Recovery in volleyball. J. Sports Med. Phys. Fitness 2019, 59, 982–993. [Google Scholar] [CrossRef]
- Lima, R.F.; Silva, A.; Afonso, J.; Castro, H.; Clemente, F.M. External and internal load and their effects on professional volleyball training. Int. J. Sports Med. 2020, 41, 468–474. [Google Scholar] [CrossRef]
- Seminati, E.; Minetti, A.E. Overuse in volleyball training/practice: A review on shoulder and spine-related injuries. Eur. J. Sport Sci. 2013, 13, 732–743. [Google Scholar] [CrossRef]
- Akarcesme, C.; Aytar, S.H. The comparison of lower extremity isokinetic strength in volleyball players according to the leagues. World J. Educ. 2018, 8, 111–118. [Google Scholar] [CrossRef]
- Agostini, V.; Chiaramello, E.; Canavese, L.; Bredariol, C.; Knaflitz, M. Postural sway in volleyball players. Hum. Mov. Sci. 2013, 32, 445–456. [Google Scholar] [CrossRef]
- Howerton, K.A. Comparison of postural stability in gymnasts, volleyball players, and non-athletes. Undergrad. Res. J. Univ. North. Colo. 2012, 2, 165–177. [Google Scholar]
- Wilczyński, J.; Lipińska-Stańczak, M.; Wilczyński, I. Body posture defects and body composition in school-age children. Children 2020, 7, 204. [Google Scholar] [CrossRef]
- Wilczyński, J.; Bieniek, K.; Margiel, K.; Sobolewski, P.K.; Wilczyński, I.; Zieliński, R. Correlations between variables of posture and postural stability in children. Med. Stud. 2022, 38, 6–13. [Google Scholar] [CrossRef]
- Perrin, P.; Deviterne, D.; Hugel, F.; Perrot, C. Judo, better than dance, develops sensorimotor adaptabilities involved in balance control. Gait Posture 2002, 15, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kolber, M.J.; Pizzini, M.; Robinson, A.; Yanez, D.; Hanney, W.J. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: An analysis of an iphone® application and gravity based inclinometry. Int. J. Sports Phys. Ther. 2013, 8, 129–137. [Google Scholar] [PubMed]
- Puszczałowska-Lizis, E.; Mól, M.; Omorczyk, J. Inter-gender differences in the formation of anteroposterior spinal curvatures in people practicing ballroom dancing. Acta Bioeng. Biomech. 2020, 22, 123–131. [Google Scholar] [CrossRef]
- Palastanga, N.; Field, D.; Soames, R. Anatomy and Human Movement: Structure and Function; Butterworth Heinemann: London, UK, 2002. [Google Scholar]
- The Saunders Group Incorporated. Saunders Digital Inclinometer; Instructional Materials; The Saunders Group, Inc.: Chaska, MN, USA, 2018. [Google Scholar]
- Zeyland-Malawka, E. Classification and assessment of body posture in modified Wolański method and New York Classification Test. Fizjoter 1999, 7, 52–55. [Google Scholar]
- Wolański, N. Control Methods and Development Norms for Children and Adolescents; AWF: Warsaw, Poland, 1975. [Google Scholar]
- Muyor, J.M.; López-Miñarro, P.A.; Alacid, F. Spinal posture of thoracic and lumbar spine and pelvic tilt in highly trained cyclists. J. Sports Sci. Med. 2011, 10, 355–361. [Google Scholar]
- Yang, J.H.; Barani, R.; Bhandarkar, A.W.; Suh, S.W.; Hong, J.Y.; Modi, H.N.; Yang, J.H. Changes in the spinopelvic parameters of elite weight lifters. Clin. J. Sport Med. 2014, 24, 343–350. [Google Scholar] [CrossRef]
- Chromik, K.; Fugiel, J.; Kołodziej, M.; Szczuka, E. The shape of front-back curves of the spine and somatic conditions at young adolescents playing the volleyball. Pol. J. Sport Med. 2013, 29, 279–287. [Google Scholar]
Group | ± SD | Max–Min | Q25 | Me | Q75 | Z | p |
---|---|---|---|---|---|---|---|
Body mass [kg] | |||||||
Study | 47.73 ± 5.50 | 61.00–38.00 | 44.00 | 47.50 | 51.00 | 2.70 | 0.007 * |
Control | 44.10 ± 14.12 | 102.00–29.00 | 35.00 | 42.00 | 47.00 | ||
Body height [cm] | |||||||
Study | 159.27 ± 7.09 | 174.00–146.00 | 154.00 | 160.00 | 163.00 | 3.05 | 0.002 * |
Control | 152.27 ± 9.38 | 172.00–135.00 | 146.00 | 151.00 | 158.00 | ||
Body Mass Index | |||||||
Study | 18.84 ± 1.99 | 22.90–15.10 | 17.90 | 18.45 | 20.60 | 0.99 | 0.321 |
Control | 18.74 ± 4.18 | 36.10–13.20 | 16.40 | 18.10 | 19.60 |
Group | ± SD | Max–Min | Q25 | Me | Q75 | Z | p |
---|---|---|---|---|---|---|---|
Inclination of the lumbosacral section of the spine: α angle [°] | |||||||
Study | 13.80 ± 4.57 | 20.00–2.00 | 10.00 | 15.00 | 16.00 | −1.83 | 0.066 |
Control | 16.27 ± 5.17 | 26.00–5.00 | 12.00 | 15.00 | 20.00 | ||
Inclination of the thoracolumbar section of the spine: β angle [°] | |||||||
Study | 13.40 ± 5.63 | 30.00–5.00 | 10.00 | 14.10 | 16.80 | −1.55 | 0.118 |
Control | 15.77 ± 5.26 | 25.00–5.00 | 12.00 | 14.20 | 17.15 | ||
Inclination of the upper thoracic section of the spine: γ angle [°] | |||||||
Study | 22.90 ± 7.12 | 35.00–5.00 | 18.00 | 21.50 | 30.00 | −0.57 | 0.564 |
Control | 24.20 ± 6.60 | 40.00–15.00 | 19.00 | 25.00 | 30.00 | ||
Thoracic kyphosis curvature: TKC [°] | |||||||
Study | 36.30 ± 8.21 | 45.50–12.00 | 31.00 | 35.50 | 40.00 | −1.45 | 0.145 |
Control | 39.97 ± 9.34 | 41.50–8.10 | 31.00 | 40.00 | 45.00 | ||
Lumbar lordosis curvature: LLC [°] | |||||||
Study | 27.20 ± 7.36 | 45.00–15.00 | 22.00 | 27.00 | 31.00 | −2.67 | 0.007 * |
Control | 32.03 ± 6.39 | 50.00–22.00 | 28.00 | 31.00 | 33.00 | ||
Compensation ratio: µ [°] | |||||||
Study | 9.10 ± 6.64 | 22.00–(−4.00) | 5.00 | 10.00 | 13.00 | 0.85 | 0.391 |
Control | 7.93 ± 8.06 | 25.00–(−4.00) | 1.00 | 5.50 | 12.00 |
Formation of Spinal Curvatures | Study Group | Control Group |
---|---|---|
n (%) | n (%) | |
Inclination of the lumbosacral section of the spine (α angle) | ||
Correct | 10 (33.0) | 8 (27.0) |
Incorrect | 20 (67.0) | 22 (73.00) |
Chi-square test | χ2(1) = 0.32; p = 0.573 | |
Thoracic kyphosis curvature | ||
Correct | 21 (70.00) | 13 (43.00) |
Incorrect | 9 (30.00) | 17 (57.00) |
Chi-square test | χ2(1) = 4.34; p = 0.037 * | |
Lumbar lordosis curvature | ||
Correct | 10 (33.00) | 19 (63.00) |
Incorrect | 20 (67.00) | 11 (37.00) |
Chi-square test | χ2(1) = 5.41; p = 0.020 * |
Type of Body Posture | Study Group | Control Group | ||
---|---|---|---|---|
n (%) | n (%) | |||
Balanced | 9 (30.00) | 15 (50.00) | ||
Kyphotic | 21 (70.00) | 15 (50.00) | ||
Lordotic | 0 (0.00) | 0 (0.00) | ||
Chi-square test | χ2(1) = 2.50; p = 0.114 | |||
Balanced | B I | 5 (56.00) | 9 (60.00) | |
B II | 1 (11.00) | 4 (27.00) | ||
B III | 3 (33.00) | 2 (13.00) | ||
Chi-square test | χ2(2) = 1.75; p = 0.416 | |||
Kyphotic | K I | 9 (43.00) | 4 (27.00) | |
K II | 10 (48.00) | 6 (40.00) | ||
K III | 2 (9.00) | 5 (33.00) | ||
Chi-square test | χ2(2) = 3.30; p = 0.192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puszczalowska-Lizis, E.; Mikulakova, W.; Fitas, P.; Lizis, S. Shape of the Sagittal Curvatures of the Spine in Young Female Volleyball Players. Appl. Sci. 2024, 14, 10142. https://doi.org/10.3390/app142210142
Puszczalowska-Lizis E, Mikulakova W, Fitas P, Lizis S. Shape of the Sagittal Curvatures of the Spine in Young Female Volleyball Players. Applied Sciences. 2024; 14(22):10142. https://doi.org/10.3390/app142210142
Chicago/Turabian StylePuszczalowska-Lizis, Ewa, Wioletta Mikulakova, Patrycja Fitas, and Sabina Lizis. 2024. "Shape of the Sagittal Curvatures of the Spine in Young Female Volleyball Players" Applied Sciences 14, no. 22: 10142. https://doi.org/10.3390/app142210142
APA StylePuszczalowska-Lizis, E., Mikulakova, W., Fitas, P., & Lizis, S. (2024). Shape of the Sagittal Curvatures of the Spine in Young Female Volleyball Players. Applied Sciences, 14(22), 10142. https://doi.org/10.3390/app142210142