Circular Economy for Transport Infrastructure: An Overview of the Sustainable Use of Recycled Asphalt Shingles in Asphalt Mixtures
Abstract
:1. Introduction
2. Motivation and Objectives
3. Recycled Asphalt Shingles (RAS)
3.1. Shingle Composition
3.2. RAS Processing
3.3. RAS Modification Mechanism
4. RAS Laboratory Mixing Methods
4.1. Wet Mixing Method
4.2. Dry Mixing Method
5. Effect of RAS on Performance Properties of Asphalt Binders and Mixtures
5.1. High-Temperature Performance of RAS-Modified Asphalt Binders and Mixtures
5.2. Low-Temperature Performance of RAS-Modified Asphalt Binders and Mixtures
5.3. Fatigue Performance of RAS-Modified Asphalt Binders and Mixtures
5.4. Moisture Damage Resistance of RAS-Modified Asphalt Mixtures
6. Field Performance of RAS-Modified Asphalt Mixtures
7. Overview and Prospective Developments
- Comprehensive research studies have not been performed on the RAS mixing time, RAS size (either particles < 12.5 mm or ultrafine powder of RAS), and mixing temperature (HMA, WMA, CMA) to obtain a relatively optimized modified mixture in terms of performance properties.
- Methodologies (such as the use of specific additives) able to optimize the fatigue and thermal crack resistance without compromising the high-temperature performance require detailed study.
- Due to the small number of conflicting experimental findings, there is a need to investigate the RAS-modified asphalt mixtures’ moisture susceptibility, as well as the resistance against freeze–thaw cycles of RAS-modified bituminous mixtures.
- The addition of RAS into porous asphalt mixtures has not been studied yet.
- Very few studies exist about the combination of RAS and warm-mix technologies; thus, RAS-modified WMA requires extensive investigation, taking into account the different available warm technologies.
- There is the need to deeply investigate the rheological and chemophysical properties of RAS-modified asphalt mastics.
- There is still a lack of plant-scale validation of RAS-modified bituminous mixtures to develop policies at a national level towards the use of RAS in sustainable asphalt pavements.
- There is a need to prepare a clear road map (either for the wet or dry mixing method) related to the addition of RAS in asphalt mixtures during real plant production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghabchi, R.; Barman, M.; Singh, D.; Zaman, M.; Mubaraki, M.A. Comparison of laboratory performance of asphalt mixes containing different proportions of RAS and RAP. Constr. Build. Mater. 2016, 124, 343–351. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Rheological characterization of warm-modified asphalt mastics containing electric arc furnace steel slags. Adv. Mater. Sci. Eng. 2016, 2016, 9535940. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. J. Clean. Prod. 2017, 166, 835–843. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Pasquini, E.; Poulikakos, L. Dry Addition of Recycled Waste Polyethylene in Asphalt Mixtures: A Laboratory Study. Materials 2022, 15, 4739. [Google Scholar] [CrossRef]
- Zieliñski, P. Testing of asphalt mixtures containing an addition of reclaimed asphalt shingles. Roads Bridges-Drog. I Mosty 2022, 21, 277–292. [Google Scholar] [CrossRef]
- Putman, B.J.; Amirkhanian, S.N. Utilization of waste fibers in stone matrix asphalt mixtures. Resour. Conserv. Recycl. 2004, 42, 265–274. [Google Scholar] [CrossRef]
- Skaf, M.; Pasquini, E.; Revilla-Cuesta, V.; Ortega-López, V. Performance and durability of porous asphalt mixtures manufactured exclusively with electric steel slags. Materials 2019, 12, 3306. [Google Scholar] [CrossRef]
- Shirzad, S.; Hassan, M.M.; Aguirre, M.A.; Cooper, S.; Negulescu, I.I. Effects of light-activated self-healing polymers on the rheological behaviors of asphalt binder containing recycled asphalt shingles. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 301–310. [Google Scholar] [CrossRef]
- Tušar, M.; Kakar, M.R.; Poulikakos, L.D.; Pasquini, E.; Baliello, A.; Pasetto, M.; Porot, L.; Wang, D.; Falchetto, A.C.; Dalmazzo, D.; et al. RILEM TC 279 WMR round robin study on waste polyethylene modified bituminous binders: Advantages and challenges. Road Mater. Pavement Des. 2022, 24, 311–339. [Google Scholar] [CrossRef]
- Paulsen, G.R.E.G.; Stroup-Gardiner, M.; Epps, J. Recycling Waste Roofing Material in Asphalt Paving Mixtures. Transp. Res. Rec. 1987, 1115, 171–182. [Google Scholar]
- Mokhtari, A.; Bozorgzad, A.; Hasa, E.; Lee, H.; Guymon, C.A. Field implementation of WMA mixtures containing recycled asphalt shingles (RAS). Constr. Build. Mater. 2020, 250, 118836. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, B.; Hu, W.; Tang, B.; Yu, M.; Ding, Y.; Huang, B.; Hu, W.; Tang, B.; Yu, M. Utilizing recycled asphalt shingle into pavement by extraction method. J. Clean. Prod. 2019, 236, 117656. [Google Scholar] [CrossRef]
- Arnold, J.W.; Behnia, B.; McGovern, M.E.; Hill, B.; Buttlar, W.G.; Reis, H. Quantitative evaluation of low-temperature performance of sustainable asphalt pavements containing recycled asphalt shingles (RAS). Constr. Build. Mater. 2014, 58, 1–8. [Google Scholar] [CrossRef]
- Nam, B.; Maherinia, H.; Behzadan, A.H. Mechanical characterization of asphalt tear-off roofing shingles in Hot Mix Asphalt. Constr. Build. Mater. 2014, 50, 308–316. [Google Scholar] [CrossRef]
- Mivehchi, M.; Wen, H.; Wen, Y.; Wang, L. Study of Measures to Design Asphalt Mixes Including High Percentages of Recycled Asphalt Pavement and Recycled Asphalt Shingles. Transp. Res. Rec. J. Transp. Res. Board 2022, 2677, 869–879. [Google Scholar] [CrossRef]
- Yan, Y.; Hernando, D.; Roque, R. A solvent free method to characterize the effect of recycled asphalt shingles on virgin asphalt binder. J. Clean. Prod. 2018, 208, 795–805. [Google Scholar] [CrossRef]
- Oldham, D.J.; Fini, E.H.; Chailleux, E. Application of a bio-binder as a rejuvenator for wet processed asphalt shingles in pavement construction. Constr. Build. Mater. 2015, 86, 75–84. [Google Scholar] [CrossRef]
- Alvergue, A.; Elseifi, M.; Mohammad, L.N.; Cooper, S. Laboratory evaluation of asphalt mixtures with reclaimed asphalt shingle prepared using the wet process. Road Mater. Pavement Des. 2014, 15, 62–77. [Google Scholar] [CrossRef]
- Arámbula-Mercado, E.; Kaseer, F.; Martin, A.E.; Yin, F.; Cucalon, L.G. Evaluation of recycling agent dosage selection and incorporation methods for asphalt mixtures with high RAP and RAS contents. Constr. Build. Mater. 2018, 158, 432–442. [Google Scholar] [CrossRef]
- Cao, W.; Barghabany, P.; Mohammad, L.; Cooper, S.B.; Balamurugan, S. Chemical and rheological evaluation of asphalts incorporating RAP/RAS binders and warm-mix technologies in relation to crack resistance. Constr. Build. Mater. 2018, 198, 256–268. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A. Use of asphalt roofing shingle waste in HMA. Constr. Build. Mater. 2005, 19, 337–346. [Google Scholar] [CrossRef]
- Best Practices for the Use of RA S in HMA: Workshop Student Handbook Product 5-6614-01-P2. 2019. Available online: https://rosap.ntl.bts.gov/view/dot/44340 (accessed on 5 June 2024).
- John, D. Using Recycled Asphalt Shingles in Asphalt Pavements. Asphalt Magazine. 16 March 2011. Available online: https://www.asphaltmagazine.com/using-recycled-asphalt-shingles-in-asphalt-pavements/ (accessed on 1 July 2024).
- Zhou, F.; Chen, P.; Huang, S.-C. Characteristics of Virgin and Recycled Asphalt Shingle Binder Blends. Transp. Res. Rec. J. Transp. Res. Board 2014, 2444, 78–87. [Google Scholar] [CrossRef]
- Abbas, A.R.; Mannan, U.A.; Dessouky, S. Effect of recycled asphalt shingles on physical and chemical properties of virgin asphalt binders. Constr. Build. Mater. 2013, 45, 162–172. [Google Scholar] [CrossRef]
- Pipintakos, G.; Sreeram, A.; Mirwald, J.; Bhasin, A. Engineering bitumen for future asphalt pavements: A review of chemistry, structure and rheology. Mater. Des. 2024, 244, 113157. [Google Scholar] [CrossRef]
- Aaron, C. “Pros and Cons of Polymer Modified Shingles: Indy Roof.” Indy Roof & Restoration. 12 September 2022. Available online: https://indyroofandrestoration.com/polymer-modified-shingles/ (accessed on 20 June 2024).
- Yang, Q.; Lin, J.; Wang, X.; Wang, D.; Xie, N.; Shi, X. A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties. Clean. Mater. 2024, 12, 100255. [Google Scholar] [CrossRef]
- Zhao, S. Blending Issues of Hot and Warm Mix Asphalt Containing Recycled Asphalt Pavement and Recycled Asphalt Shingle. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2014. Available online: https://trace.tennessee.edu/utk_graddiss/3209 (accessed on 15 July 2024).
- Oldham, D.J.; Rajib, A.I.; Onochie, A.; Fini, E.H. Durability of bio-modified recycled asphalt shingles exposed to oxidation aging and extended sub-zero conditioning. Constr. Build. Mater. 2019, 208, 543–553. [Google Scholar] [CrossRef]
- Barry, K.; Daniel, J.S.; Foxlow, J.; Gray, K. An evaluation of reclaimed asphalt shingles in hot mix asphalt by varying sources and quantity of reclaimed asphalt shingles. Road Mater. Pavement Des. 2013, 15, 259–271. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Austerman, A.J.; Bonaquist, R.; Roussel, M. Performance characteristics of thin-lift overlay mixtures: High reclaimed asphalt pavement content, recycled asphalt shingles, and warm-mix asphalt technology. Transp. Res. Rec. 2011, 2208, 17–25. [Google Scholar] [CrossRef]
- Newcomb, D.; Stroup-Gardiner, M.; Weikle, B.; Drescher, A. Influence of Roofing Shingles on Asphalt Concrete Mixture Properties; MN/RC-93/09; Minnesota Department of Transportation: Saint Paul, MN, USA, 1993; pp. 3–9. Available online: https://conservancy.umn.edu/server/api/core/bitstreams/8d6cf52b-8bcb-4efb-b27f-7f74fabcf0f3/content (accessed on 10 June 2024).
- Zhou, F.; Li, H.; Lee, R.; Scullion, T.; Claros, G. Recycled Asphalt shingle binder characterization and blending with Virgin Binders. Transp. Res. Rec. J. Transp. Res. Board 2013, 2370, 33–43. [Google Scholar] [CrossRef]
- Tapsoba, N.; Baaj, H.; Sauzéat, C.; Di Benedetto, H.; Ech, M. 3D Analysis and Modelling of Thermal Stress Restrained Specimen Test (TSRST) on Asphalt Mixes with RAP and Roofing Shingles. Constr. Build. Mater. 2016, 120, 393–402. [Google Scholar] [CrossRef]
- Tapsoba, N.; Sauzéat, C.; Di Benedetto, H.; Baaj, H.; Ech, M. Behaviour of asphalt mixtures containing reclaimed asphalt pavement and asphalt shingle. Road Mater. Pavement Des. 2014, 15, 330–347. [Google Scholar] [CrossRef]
- Moon, K.H.; Falchetto, A.C.; Marasteanu, M.; Turos, M. Using recycled asphalt materials as an alternative material source in asphalt pavements. KSCE J. Civ. Eng. 2013, 18, 149–159. [Google Scholar] [CrossRef]
- Cooper, S.B.; Negulescu, I.; Balamurugan, S.S.; Mohammad, L.; Daly, W.H. Binder composition and intermediate temperature cracking performance of asphalt mixtures containing RAS. Road Mater. Pavement Des. 2015, 16, 275–295. [Google Scholar] [CrossRef]
- Elseifi, M.A.; Salari, S.; Mohammad, L.N.; Hassan, M.; Daly, W.H.; Dessouky, S. New Approach to Recycling Asphalt Shingles in Hot-Mix Asphalt. J. Mater. Civ. Eng. 2012, 24, 1403–1411. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, K.; Wen, H.; DeVol, J.; Kelsey, K. Performance Evaluation of Hot Mix Asphalt Containing Recycled Asphalt Shingles in Washington State. J. Mater. Civ. Eng. 2016, 28, 04015088. [Google Scholar] [CrossRef]
- Maher, M.L.J.; Uzarowski, L.; Prilesky, H.; Berube, E. Laboratory Evaluation of Performance of Hot Mix Asphalt Mixes Containing Reclaimed Asphalt Roofing Shingles. In Proceedings of the 5th International Conference, Bituminous mixtures and pavements, Thessaloniki, Greece, 1–3 June 2011. [Google Scholar]
- Baaj, H.; Ech, M.; Tapsoba, N.; Sauzeat, C.; Di Benedetto, H. Thermomechanical characterization of asphalt mixtures modified with high contents of asphalt shingle modifier (ASM®) and reclaimed asphalt pavement (RAP). Mater. Struct. 2013, 46, 1747–1763. [Google Scholar] [CrossRef]
- Aguirre, M.A.; Hassan, M.M.; Shirzad, S.; Mohammad, L.N.; Cooper, S.B. Performance of asphalt rejuvenators in hot-mix asphalt containing recycled asphalt shingles. Transp. Res. Rec. J. Transp. Res. Board 2017, 2633, 108–116. [Google Scholar] [CrossRef]
- Tran, N.; Xie, Z.; Julian, G.; Taylor, A.; Willis, R.; Robbins, M.; Buchanan, S. Effect of a recycling agent on the performance of high-RAP and high-RAS mixtures: Field and Lab Experiments. J. Mater. Civ. Eng. 2017, 29, 04016178. [Google Scholar] [CrossRef]
- Ozer, H.; Al-Qadi, I.L.; Kanaan, A.I.; Lippert, D.L. Performance characterization of asphalt mixtures at high Asphalt Binder replacement with recycled Asphalt Shingles. Transp. Res. Rec. J. Transp. Res. Board 2013, 2371, 105–112. [Google Scholar] [CrossRef]
- Kanaan, A.I.; Ozer, H.; Al-Qadi, I.L. Testing of fine asphalt mixtures to quantify effectiveness of asphalt binder replacement using recycled shingles. Transp. Res. Rec. J. Transp. Res. Board 2014, 2445, 103–112. [Google Scholar] [CrossRef]
- Jahangiri, B.; Majidifard, H.; Meister, J.; Buttlar, W.G. Performance Evaluation of Asphalt Mixtures with Reclaimed Asphalt Pavement and Recycled Asphalt Shingles in Missouri. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 392–403. [Google Scholar] [CrossRef]
- You, Z.; Mills-Beale, J.; Fini, E.; Goh, S.W.; Colbert, B. Evaluation of Low-Temperature Binder Properties of Warm-Mix Asphalt, Extracted and Recovered RAP and RAS, and Bioasphalt. J. Mater. Civ. Eng. 2011, 23, 1569–1574. [Google Scholar] [CrossRef]
- Cooper, S.B., Jr.; Negulescu, I.; Balamurugan, S.S.; Mohammad, L.; Daly, W.H.; Baumgardner, G.L. Asphalt mixtures containing RAS and/or RAP: Relationships amongst binder composition analysis and mixture intermediate temperature cracking performance. Road Mater. Pavement Des. 2016, 18, 209–234. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hanson, D.I.; Lynn, T.A. Evaluation of Roofing Shingles in Hot Mix Asphalt. J. Mater. Civ. Eng. 1999, 11, 15–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Swiertz, D.; Bahia, H.U. Use of blended binder tests to estimate performance of mixtures with high reclaimed asphalt pavement/recycled asphalt shingles content. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 281–293. [Google Scholar] [CrossRef]
- Shivaprasad, P.V.; Xiao, F.; Amirkhanian, S.N. Performance of warm-mix asphalt mixtures containing recycled coal ash and roofing shingles with moist aggregates for low-volume roads. Transp. Res. Rec. J. Transp. Res. Board 2011, 2205, 48–57. [Google Scholar] [CrossRef]
- Tavassoti-Kheiry, P.; Solaimanian, M.; Qiu, T. Characterization of High RAP/RAS Asphalt Mixtures Using Resonant Column Tests. J. Mater. Civ. Eng. 2016, 28, 04016143. [Google Scholar] [CrossRef]
- Hassan, M.M.; Lodge, A.; Mohammad, L.N.; King, W.B., Jr. Variability and Characteristics of Recycled Asphalt Shingles Sampled from Different Sources. J. Mater. Civ. Eng. 2014, 26, 748–754. [Google Scholar] [CrossRef]
- Cooper, S.B.; Mohammad, L.N.; Elseifi, M.A. Laboratory Performance of Asphalt Mixtures Containing Recycled Asphalt Shingles and Re-Refined Engine Oil Bottoms. J. Mater. Civ. Eng. 2017, 29, 04017106. [Google Scholar] [CrossRef]
- Sharifi, N.P.; Mckay, Z.; Blankenship, P.; Mahboub, K.C.; Anderson, R.M. Assessing Binder Blending Level in Asphalt Mixtures Containing Recycled Asphalt Shingles. J. Mater. Civ. Eng. 2019, 31, 04019144. [Google Scholar] [CrossRef]
- Cascione, A.A.; Williams, R.C.; Yu, J. Performance testing of asphalt pavements with recycled asphalt shingles from multiple field trials. Constr. Build. Mater. 2015, 101, 628–642. [Google Scholar] [CrossRef]
- Buss, A.; Cascione, A.; Williams, R.C. Evaluation of warm mix asphalt containing recycled asphalt shingles. Constr. Build. Mater. 2014, 61, 1–9. [Google Scholar] [CrossRef]
- Shirzad, S.; Aguirre, M.A.; Bonilla, L.; Elseifi, M.A.; Cooper, S.; Mohammad, L.N. Mechanistic-empirical pavement performance of asphalt mixtures with recycled asphalt shingles. Constr. Build. Mater. 2018, 160, 687–697. [Google Scholar] [CrossRef]
- Haddadi, S.S.; Coleri, E.; Sreedhar, S. Strategies to improve performance of reclaimed asphalt pavement-recycled asphalt shingle mixtures. Int. J. Pavement Eng. 2019, 22, 201–212. [Google Scholar] [CrossRef]
- Watson, D.E.; Johnson, A.; Sharma, H.R. Georgia’s Experience with Recycled Roofing Shingles in Asphaltic Concrete. Transp. Res. Rec. J. Transp. Res. Board 1998, 1638, 129–133. [Google Scholar] [CrossRef]
- Mcgraw, J. Incorporation of Recycled Asphalt Shingles in Hot-Mixed Asphalt Pavement Mixtures. 2010. Available online: https://mdl.mndot.gov/_flysystem/fedora/2023-01/201008.pdf (accessed on 5 July 2024).
- Yang, J.; Ddamba, S.; Ul-Islam, R.; Safiuddin, M.; Tighe, S.L. Investigation on use of recycled asphalt shingles in Ontario hot mix asphalt: A Canadian case study. Can. J. Civ. Eng. 2014, 41, 136–143. [Google Scholar] [CrossRef]
- Maupin, G.W. “Use of Manufactured Waste Shingles in a Hot-Mix Asphalt Field Project” Virginia Transportation Research Council (VTRC); Virginia Department of Transportation. 2008. Available online: https://rosap.ntl.bts.gov/view/dot/19980 (accessed on 20 July 2024).
Reference Study | RAS Type and Particle Size | RAS Mixing Details in Asphalt Binder | RAS Dosage (% by Binder/Mix Weight) | Mixing Method Used Dry/Wet | Asphalt Mixture Type |
---|---|---|---|---|---|
[1] | TOSS ≤ 12.5 mm | N/G | 5, 6% by aggregate | N/G | HMA |
[8] | TOSS extracted binder | Mixing at 3600 rpm for 30 min | 5% by binder | Wet | Binder only |
[11] | TOSS < 12.5 mm | N/G | 4% only by aggregate (aggregate replacement) | Dry | WMA, HMA |
[12] | TOSS binder | N/G | N/G | Wet | Binder only |
[13] | TOSS < 9.5 mm | N/G | 2.5, 5, 7.5, 10, 12.5% by mixture | Dry | HMA WMA |
[14] | TOSS < 13 mm | N/G | 1, 2, 3, 4, 5, 6% by aggregate weight | Dry | HMA |
[15] | TOSS < 12.5 mm | N/G | N/G | N/G | HMA |
[16] | MWSS, TOSS binder | N/G | 15, 30, 100% by binder | Wet | Binder only |
[17] | TOSS 70% < 1 mm | Mixing at 750 rpm, 30 min, 135 °C to obtain BMAS | 5, 15, 30, 40% by binder | Wet | Binder only |
[18] | TOSS < 0.075 mm | Mixing 30 min at 180–200 °C | N/G | Both | HMA |
[19] | TOSS binder | N/G | 5% by binder | Wet | Binder only |
[20] | TOSS binder | N/G | 20% by binder | Wet | HMA, WMA |
[30] | TOSS < 9.5 mm | Mixing at 180 °C, 1 h, 450 rpm | 5, 15, 30, and 40% by binder | Wet | Binder only |
[31] | MWSS, TOSS < 9 mm | Mixed with binder (1.5–2 h) | 0.6–1.5% by mix | Wet | HMA |
[24] | MWSS and TOSS extracted binder | Virgin and extracted binder blended for 7 min | 5, 10, 15, 30, 45, 60, 80, 100% by binder | Wet | Binder only |
[32] | TOSS ≤ 2.36 mm | 5 min mixing with aggregate before adding binder | 5% by mix | Dry | WMA |
[34] | MWSS and TOSS extracted binder | N/G | 5, 10, 15, 20% by binder | Wet | Binder only |
[35] | MWSS < 12.5 mm | N/G | 3, 5, 7, 10% of total mix | Dry | HMA |
[36] | RAS < 12.5 mm | N/G | 3, 5% by aggregate | Dry | HMA |
[37] | MWSS and TOSS Both (19 mm) | N/G | 3, 5% by binder | Dry | HMA |
[38] | TOSS and RAP extracted binder | N/G | 5% by aggregate | Dry | HMA |
[39] | MWSS and TOSS ultrafine powder | Shingle mixing 180 °C, 30 min, 1500 rpm | 10, 20, 40% by binder | Wet | Binder only |
[40] | TOSS < 12.5 mm | N/G | 3% by binder | Dry (plant mix) Wet (lab tests) | HMA |
[41] | TOSS < 12.5 mm | N/G | 3, 5% by mixture | N/G | HMA |
[42] | MWSS < 12.5 mm | N/G | 0–10% by mixture | Dry | HMA |
[43] | TOSS < 12.5 mm | N/G | 5% by mixture | Dry | HMA |
[44] | TOSS < 9 mm | N/G | 5% RAS | N/G | HMA |
[45] | TOSS < 12.5 mm | N/G | 2.5, 5, 7.5% RAS by mix | Dry | HMA |
[46] | TOSS ≤ 3 mm | N/G | 2.5, 7% RAS by mix | Both | HMA |
[47] | TOSS < 12.5 mm | N/G | 10, 15, 17, 30, 34% by mix | N/G | HMA |
[48] | TOSS binder | N/G | 5–10% by binder | Wet | WMA |
[49] | MWSS, TOSS < 12.5 mm | N/G | 5% by mix | N/G | HMA |
[50] | MWSS < 1 mm | N/G | 5, 10% by aggregate | N/G | HMA |
[51] | TOSS < 12.5 mm | N/G | 5% by mix | Both | HMA |
[52] | MWSS < 12.5 mm | N/G | 3, 5% by aggregate | Dry | HMA, WMA |
[53] | TOSS < 12.5 mm | N/G | 5% by mix | Dry | HMA |
[54] | MWSS, TOSS binder | Shingle mixing 180 °C, 30 min, 1500 rpm | 2.5, 5, 10% by binder | Wet | Binder only |
[55] | TOSS < 12.5 mm | N/G | 5% by mix | N/G | HMA |
[56] | TOSS ≤ 4.75 mm | Shingle mixing 150 °C, 1500 rpm | 2.5, 5% by mix | Wet | HMA |
[57] | MWSS, TOSS < 9.5 mm | N/G | 4.5 and 6% by mix | Both | HMA |
[58] | TOSS < 9.5 mm | N/G | 3.5 and 7% by mix | Dry | WMA, HMA |
[59] | TOSS < 12.5 mm | N/G | 5% by mix | Dry | HMA |
[60] | TOSS < 12.5 mm | N/G | N/G | Dry | HMA |
Reference Study | Binder | Mix | Test Methods Used |
---|---|---|---|
High-Temperature Performance | |||
[1,15,31,40,43,44,45,47,51,52,58] | --- | HWTT (AASHTO T-324) | |
[31,40,42,53,57,59] | Dynamic Modulus (AASHTO T-342) | ||
[14,50] | APA (AASHTO TP-63) | ||
[32] | Dynamic Modulus (AASHTO T-342) | ||
[42] | French Wheel Track Test (EN 12697-22) | ||
[60] | Flow Number Test (AASHTO TP 79-13) | ||
[8,12,16,17,18,19,20,24,34,39,40,46,51,54,57] | --- | DSR (ASTM D7175-08) | |
[11,18,55] | --- | HWTT (AASHTO T-324) | |
[41] | APA (AASHTO TP 63-09), Dynamic Modulus (AASHTO T-342), Resilient Modulus Test (ASTM D 7369-09) | ||
Low-Temperature Performance | |||
[36] | --- | TSRST (AASHTO TP10-93) | |
[48] | ABCD (AASHTO M-320) | ||
[17] | --- | Three-Point Bending Beam Test (CEN/TS 15936) | |
[50,51] | --- | IDT Test (ASTM D 4123) | |
[1] | Creep Compliance Test (AASHTO T-322) | ||
[13] | Acoustic Emission Test | ||
[38] | SCB (ASTM D-8044) | ||
[57] | FPBBT (AASHTO T321) | ||
[16,19,20,51,54] | --- | BBR (AASHTO M-320) | |
[18,45] | --- | SCB (ASTM D-8044) | |
[35,42,55] | TSRST (AASHTO TP10-93) | ||
[31,41,58] | FPBBT (ASTM D7460-08) | ||
[32] | ACCD | ||
[44] | IDT Test (AASHTO T322-07) | ||
[11] | DC (T) (ASTM D7313) | ||
[37] | BBR (AASHTO M-320) | ||
[40] | Creep Compliance Test (AASHTO T-322) | ||
[8,39] | --- | BBR (AASHTO M-320) | |
Fatigue Resistance | |||
[1] | --- | Creep Compliance Test (AASHTO T-322) | |
[31] | Direct Tension Cyclic Fatigue Test (AASHTO TP 107-14) | ||
[42] | TCFT (EN 12697-26) | ||
[45] | Push Pull Fatigue Test (AASHTO T-400) | ||
[46] | Shear strength test | ||
[58] | SCB (ASTM D-8044) | ||
[18,20,57] | --- | SCB (ASTM D-8044) | |
[40] | IDT Test (ASTM D 4123) | ||
[41] | FPBBT (AASHTO T321) | ||
[15,43,44,49,55,59,60] | --- | SCB (ASTM D-8044) | |
[50,51] | IDT Test (ASTM D 4123) | ||
[32] | Texas Overlay Test | ||
[46] | Shear Strength Test | ||
[47] | DC (T) (ASTM D7313) | ||
[56] | FPBBT (AASHTO T321) | ||
[51] | --- | DSR (ASTM D7175-08) | |
Moisture Resistance | |||
[32,44,52] | --- | HWTT (AASHTO T-324) | |
[14,42] | TSR (AASHTO T-283) | ||
[58] | --- | TSR (AASHTO T-283) | |
[11,40,43,47] | --- | HWTT (AASHTO T-324) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasetto, M.; Haider, S.; Pasquini, E. Circular Economy for Transport Infrastructure: An Overview of the Sustainable Use of Recycled Asphalt Shingles in Asphalt Mixtures. Appl. Sci. 2024, 14, 10145. https://doi.org/10.3390/app142210145
Pasetto M, Haider S, Pasquini E. Circular Economy for Transport Infrastructure: An Overview of the Sustainable Use of Recycled Asphalt Shingles in Asphalt Mixtures. Applied Sciences. 2024; 14(22):10145. https://doi.org/10.3390/app142210145
Chicago/Turabian StylePasetto, Marco, Safeer Haider, and Emiliano Pasquini. 2024. "Circular Economy for Transport Infrastructure: An Overview of the Sustainable Use of Recycled Asphalt Shingles in Asphalt Mixtures" Applied Sciences 14, no. 22: 10145. https://doi.org/10.3390/app142210145
APA StylePasetto, M., Haider, S., & Pasquini, E. (2024). Circular Economy for Transport Infrastructure: An Overview of the Sustainable Use of Recycled Asphalt Shingles in Asphalt Mixtures. Applied Sciences, 14(22), 10145. https://doi.org/10.3390/app142210145