Hydraulic Design and CFD-Based Parametric Study for Optimizing Centrifugal Pump Impeller Performance
Abstract
:1. Introduction
2. Methodology
2.1. Characteristics of the Centrifugal Pump CHP 150-315/1500
2.2. Hydraulic Calculations of the Basic Structural Design of a Single-Stage Pump
Calculation of the Main Geometric Parameters of the Impeller
2.3. CFD Modeling
2.3.1. Problem Statement and Geometry
2.3.2. Mathematical Model
- Stationary flow: the fluid flow is considered stationary, i.e., the time variations in the velocity and pressure are not taken into account, which simplifies the solution of the problem and reduces the computational costs.
- Constant fluid properties: the parameters such as viscosity and density are assumed to be constant throughout the flow, eliminating complex thermodynamic processes and simplifying the calculations.
- Incompressible fluid: the fluid is assumed to be incompressible, which eliminates the effect of density changes on the flow and simplifies the solution of the Navier–Stokes equations.
- Smooth walls: to eliminate the effect of roughness on the fluid flow, the pump walls are assumed to be perfectly smooth, which eliminates microscopic defects that could affect the result.
- Constant temperature: the flow is assumed to be isothermal, i.e., without temperature changes, which eliminates the heat transfer and related processes.
- Impeller periodicity: This interface boundary condition is used to model a single blade sector to reduce the computational time and work time.
2.3.3. Initial and Boundary Conditions
2.3.4. Calculation Mesh Construction
3. Results and Validation of the Developed Models
3.1. Results of the Hydraulic Calculations
3.2. Results of CFD Modeling
4. Parametric Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jianxin, H.; Li, K.; Su, W.; Zhao, X. Numerical Simulation of Drilling Fluid Flow in Centrifugal Pumps. Water 2023, 15, 992. [Google Scholar] [CrossRef]
- Bellary, S.A.I.; Samad, A. Pumping crude oil by centrifugal impeller having different blade angles and surface roughness. J. Pet. Explor. Prod. Technol. 2016, 6, 117–127. [Google Scholar] [CrossRef]
- Kim, B.; Siddique, M.H.; Samad, A.; Hu, G.; Lee, D.-E. Optimization of centrifugal pump impeller for pumping viscous fluids using direct design optimization technique. Machines 2022, 10, 774. [Google Scholar] [CrossRef]
- Chang, G.; Gao, M.; He, S. A Review of the Flow-Induced Noise Study for Centrifugal Pumps. Appl. Sci. 2020, 10, 1022. [Google Scholar] [CrossRef]
- Shankar, V.K.A.; Umashankar, S.; Paramasivam, S.; Hanigovszki, N. A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Appl. Energy 2016, 181, 495–513. [Google Scholar] [CrossRef]
- Noon, A.A.; Kim, M.-H. Erosion wear on centrifugal pump casing due to slurry flow. Wear 2016, 364-365, 103–111. [Google Scholar] [CrossRef]
- Song, X.; Liu, C. Experimental study of the floor-attached vortices in pump sump using V3V. Renew. Energy 2021, 164, 752–766. [Google Scholar] [CrossRef]
- Sorguven, E.; Incir, S.; Highgate, J. Understanding loss generation mechanisms in a centrifugal pump using large eddy simulation. Int. J. Heat. Fluid. Flow. 2022, 96, 108994. [Google Scholar] [CrossRef]
- Chen, B.; Yu, L.; Li, X.; Zhu, Z. Insights into turbulent flow structure and energy dissipation in centrifugal pumps: A study utilizing time-resolved particle image velocimetry and proper orthogonal decomposition. Ocean. Eng. 2024, 304, 117903. [Google Scholar] [CrossRef]
- Cao, W.; Jia, Z.; Zhang, Q. Near-Wall Flow Characteristics of a Centrifugal Impeller with Low Specific Speed. Processes 2019, 7, 514. [Google Scholar] [CrossRef]
- Dehghan, A.A.; Shojaeefard, M.H.; Roshanaei, M. Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation. Energy 2024, 293, 130681. [Google Scholar] [CrossRef]
- Fu, Y.; Yuan, J.; Yuan, S.; Pace, G.; D’Agostino, L.; Huang, P.; Li, X. Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates. J. Fluids Eng. 2015, 137, 011102. [Google Scholar] [CrossRef]
- Deng, S.-S.; Li, G.-D.; Guan, J.-F.; Chen, X.-C.; Liu, L.-X. Numerical study of cavitation in centrifugal pump conveying different liquid materials. Results Phys. 2019, 12, 1834–1839. [Google Scholar] [CrossRef]
- Han, X.; Kang, Y.; Li, D.; Zhao, W. Impeller Optimized Design of the Centrifugal Pump: A Numerical and Experimental Investigation. Energies 2018, 11, 1444. [Google Scholar] [CrossRef]
- Wheeler, A.P.S.; Sofia, A.; Miller, R.J. The effect of leading-edge geometry on wake interactions in compressors. In Proceedings of the ASME Turbo Expo. 2007: Power for Land, Sea, and Air, Montreal, QC, Canada, 14–17 May 2007; pp. 1769–1779. [Google Scholar] [CrossRef]
- Luo, H.; Tao, R.; Yang, J.; Wang, Z. Influence of Blade Leading-Edge Shape on Rotating-Stalled Flow Characteristics in a Centrifugal Pump Impeller. Appl. Sci. 2020, 10, 5635. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Yang, Y.; Wang, S.; Bai, L.; Zhou, L. CFD Simulation of Centrifugal Pump with Different Impeller Blade Trailing Edges. Mar. Sci. Eng. 2023, 11, 402. [Google Scholar] [CrossRef]
- Litfin, O.; Delgado, A.; Haddad, K.; Klein, H. Numerical and experimental investigation of trailing edge modifications of centrifugal wastewater pump impellers. In Proceedings of the ASME Fluids Engineering Division Summer Meeting, Waikoloa, HI, USA, 30 July–3 August 2017; p. V01AT05A008. [Google Scholar] [CrossRef]
- Xu, Z.; Kong, F.; Tang, L.; Liu, M.; Wang, J.; Qiu, N. Effect of Blade Thickness on Internal Flow and Performance of a Plastic Centrifugal Pump. Machines 2022, 10, 61. [Google Scholar] [CrossRef]
- Yang, S.S.; Wang, C.; Chen, K.; Yuan, X. Research on Blade Thickness Influencing Pump as Turbine. Adv. Mech. Eng. 2014, 6, 190530. [Google Scholar] [CrossRef]
- Tao, Y.; Yuan, S.; Liu, J.; Zhang, F.; Tao, J. The influence of the blade thickness on the pressure pulsations in a ceramic centrifugal slurry pump with annular volute. Proc. Inst. Mech. Eng. Part A: J. Power Energy 2017, 231, 415–431. [Google Scholar] [CrossRef]
- Gülich, J.F. Pump Hydraulics and Physical Concepts. In Centrifugal Pumps, 3rd ed.; Springer: Villeneuve, Switzerland, 2014; pp. 79–156. [Google Scholar] [CrossRef]
- Chinyaev, I.A. Blade Pumps [Lopastnye Nasosy]; Voronov, V.F., Ed.; Leningrad Mashinostroenie: Leningrad, USSR, 1973; p. 185. (In Russian) [Google Scholar]
- Ivanovsky, V.N.; Sabirov, A.A.; Degovtsov, A.V.; Donskoy, Y.A.; Pekin, S.S.; Krivenkov, S.V.; Sokolov, N.N.; Kuzmin, A.V. Design and Study of Dynamic Pump Stages [Proektirovanie i Issledovanie Stupeney Dinamicheskikh Nasosov]; Gubkin Russian State University of Oil and Gas: Moscow, Russia, 2014; p. 124. (In Russian) [Google Scholar]
- Spiridonov, E.K.; Prokhasko, L.S. Calculation and Design of Blade Pumps: A Textbook [Raschet i Proektirovanie Lopastnykh Nasosov: Uchebnoe Posobie]; South Ural State University: Chelyabinsk, Russia, 2004; p. 62. (In Russian) [Google Scholar]
- Gorgidzhanyan, S.A. Hydraulic Calculations of the Flow Path of Centrifugal Pumps: Methodological Guidelines for Course Design [Gidravlicheskie Raschety Protochnoy Chasti Tsentrifugalnykh Nasosov: Metodicheskie Ukazaniya po Kursovomu Proektirovaniyu]; Martynova, S.A., Ed.; Kalinin Leningrad Polytechnic Institute: Leningrad, USSR, 1982. (In Russian) [Google Scholar]
- Mikhailov, A.K.; Malyushenko, V.V. Blade Pumps: Theory, Calculation, and Design [Lopastnye Nasosy. Teoriya, Raschet i Konstruirovanie]; Yakunina, I.I., Ed.; Moscow Mashinostroenie: Moscow, Russia, 1977; p. 304. (In Russian) [Google Scholar]
- Lomakin, A.A. Centrifugal and Axial Pumps [Tsentrifugalnye i Osevyye Nasosy]; Vasileva, V.P., Orlova, L.I., Eds.; Leningrad Mashinostroenie: Leningrad, USSR, 1965; p. 364. (In Russian) [Google Scholar]
- Menter, F.R. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows. In Proceedings of the 24th Fluid Dynamics Conference, Orlando, FL, USA, 6–9 July 1993; p. 2906. [Google Scholar]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. In Proceedings of the AIAA 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993; pp. 1598–1605. [Google Scholar]
- Colli, A.N.; Bisang, J.M. A CFD Study with Analytical and Experimental Validation of Laminar and Turbulent Mass-Transfer in Electrochemical Reactors. J. Electrochem. Soc. 2018, 165, 81–88. [Google Scholar] [CrossRef]
- Colli, A.N.; Bisang, J.M. Coupling k Convection-Diffusion and Laplace Equations in an Open-Source CFD Model for Tertiary Current Distribution Calculations. J. Electrochem. Soc. 2020, 167, 013513. [Google Scholar] [CrossRef]
- Rajendran, S.; Purushothaman, K. Analysis of a Centrifugal Pump Impeller Using ANSYS-CFX. Int. J. Eng. Res. Technol. IJERT 2012, 1, 1–6. Available online: https://www.ijert.org/research/analysis-of-a-centrifugal-pump-impeller-using-ansys-cfx-IJERTV1IS3098.pdf (accessed on 28 October 2024).
, [m3/h] | , [m] | , [kW] | [%] |
---|---|---|---|
216.6 | 33.0 | 29.40 | 66.3 |
270.4 | 32.1 | 32.11 | 73.7 |
321.8 | 31.2 | 36.54 | 74.9 |
340.1 | 30.3 | 37.32 | 75.3 |
358.7 | 29.4 | 38.58 | 74.5 |
382.2 | 28.5 | 41.47 | 71.5 |
397.7 | 27.5 | 42.37 | 70.4 |
Parameters | CHP 150-315/1500 |
---|---|
, [mm] | 46 |
, [mm] | 60 |
, [mm] | 190 |
, [mm] | 132 |
, [mm] | 324 |
, [mm] | 80 |
, [mm] | 40 |
, [°] | 20 |
, [°] | 34 |
Parameters | CHP 150-315/1500 | Ivanovsky | Spiridonov | Combined = 0.62 | |||
---|---|---|---|---|---|---|---|
Value | Deviation | Value | Deviation | Value | Deviation | ||
, [mm] | 46 | 45.9 | 0.2% | 45.9 | 0.2% | 46.8 | 1.7% |
, [mm] | 60 | 65.0 | 8.3% | 60.6 | 1.0% | 61.8 | 3.0% |
, [mm] | 190 | 187.6 | 1.3% | 188.0 | 1.1% | 187.9 | 1.1% |
, [mm] | 132 | 131.4 | 0.5% | 132.0 | 0.0% | 131.5 | 0.4% |
, [mm] | 324 | 346.0 | 6.8% | 368.0 | 13.6% | 296.1 | 8.6% |
, [mm] | 190 | 187.6 | 1.3% | 188.0 | 1.1% | 187.9 | 1.1% |
, [mm] | 74 | 75.1 | 1.5% | 76.0 | 2.7% | 75.2 | 1.6% |
, [mm] | 80 | 60.0 | 25.0% | 85.0 | 6.3% | 75.4 | 5.8% |
, [mm] | 40 | 22.8 | 43.1% | 29.0 | 27.5% | 42.0 | 5.0% |
, [°] | 20 | 26.1 | 30.7% | 24.1 | 20.4% | 19.9 | 0.4% |
, [°] | 34 | 34.4 | 1.3% | 37.6 | 10.4% | 34.5 | 1.6% |
, [°] | 14 | 19.7 | 40.4% | 19.4 | 38.4% | 15.1 | 7.6% |
, [°] | 32 | 39.8 | 24.4% | 34.5 | 7.7% | 30.0 | 6.2% |
Parameters | Values | |||||
---|---|---|---|---|---|---|
blade LE angles | = 14° | = 16° | = 18° | = 22° | = 24° | = 26° |
= 8° | = 10° | = 12° | = 16° | = 18° | = 20° | |
= 26° | = 28° | = 30° | = 34° | = 36° | = 38° | |
blade TE angle | = 28° | = 30° | = 32° | = 36° | = 38° | = 40° |
blade wrap angles | = 106.2° | = 108.2° | = 110.2° | = 114.2° | = 116.2° | = 118.2° |
= 121.0° | = 123.0° | = 125.0° | = 129.0° | = 131.0° | = 133.0° | |
= 113.2 | = 115.2° | = 117.2° | = 121.2° | = 123.2° | = 125.2° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliuly, A.; Amanzholov, T.; Seitov, A.; Momysh, N.; Jaichibekov, N.; Kaltayev, A. Hydraulic Design and CFD-Based Parametric Study for Optimizing Centrifugal Pump Impeller Performance. Appl. Sci. 2024, 14, 10161. https://doi.org/10.3390/app142210161
Aliuly A, Amanzholov T, Seitov A, Momysh N, Jaichibekov N, Kaltayev A. Hydraulic Design and CFD-Based Parametric Study for Optimizing Centrifugal Pump Impeller Performance. Applied Sciences. 2024; 14(22):10161. https://doi.org/10.3390/app142210161
Chicago/Turabian StyleAliuly, Abdurashid, Tangnur Amanzholov, Abzal Seitov, Nazerke Momysh, Nurbolat Jaichibekov, and Aidarkhan Kaltayev. 2024. "Hydraulic Design and CFD-Based Parametric Study for Optimizing Centrifugal Pump Impeller Performance" Applied Sciences 14, no. 22: 10161. https://doi.org/10.3390/app142210161
APA StyleAliuly, A., Amanzholov, T., Seitov, A., Momysh, N., Jaichibekov, N., & Kaltayev, A. (2024). Hydraulic Design and CFD-Based Parametric Study for Optimizing Centrifugal Pump Impeller Performance. Applied Sciences, 14(22), 10161. https://doi.org/10.3390/app142210161