A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Nutritional Profile
Common Beans Consumed Worldwide
- Black beans (Phaseolus vulgaris);
- Κidney beans (Phaseolus vulgaris);
- Navy beans (Phaseolus vulgaris);
- Pinto beans (Phaseolus vulgaris);
- Great Northern beans (Phaseolus vulgaris);
- Black-eyed beans (Vigna unguiculata);
- Lima beans (Phaseolus lunatus);
- Soybeans (Glycine max);
- Garbanzo beans (Cicer arietinum L.);
- Fava bean (Vicia faba);
- Mung beans (Vigna radiata);
- Azuki bean or red bean (Vigna angularis) [30]
3.2. Health Benefits
3.2.1. Cardiovascular Disease
3.2.2. Cancer
3.2.3. Diabetes Mellitus
3.2.4. Non-Alcoholic Fatty Liver Disease (NAFLD)
3.2.5. Obesity
3.2.6. Other Health Effects
3.3. Side Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Budreviciute, A.; Damiati, S.; Sabir, D.K.; Onder, K.; Schuller-Goetzburg, P.; Plakys, G.; Katileviciute, A.; Khoja, S.; Kodzius, R. Management and prevention strategies for non-communicable diseases (NCDs) ant their risk factors. Front. Public Health 2020, 8, 574111. [Google Scholar] [CrossRef] [PubMed]
- Hansbro, P. The Good Gut Anti-Inflammatory Diet: Beat Whole Body Inflammation and Live Longer, Happier, Healthier and Younger; Pantera Press: Sydney, Australia, 2023. [Google Scholar]
- Bell, S.J.; Bouffard, R.P.; Wijendran, V.; Bauer, K.; Marsland, C. The Anti-Inflammatory Diet: What To Consider. Nutr. Perspect. J. Counc. Nutr. 2019, 42, 26–46. [Google Scholar]
- Serventi, L.; Serventi, L.; Dsouza, L.V. Bioactives in legumes. In Upcycling Legume Water: From Wastewater to Food Ingredients; Springer: Berlin/Heidelberg, Germany, 2020; pp. 139–153. [Google Scholar]
- Moreno-Valdespino, C.A.; Luna-Vital, D.; Camacho-Ruiz, R.M.; Mojica, L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef] [PubMed]
- Wharton, J. Bean Briefs. Top. Clin. Nutr. 2011, 26, 208–215. [Google Scholar]
- Bossi, D.S.D.; Saah, M.B.D.; Njapndounké, B.; Ngoufack, F.Z. Nutritional evaluation, oxidative indexes, and functional properties of Irish potatoes, eggs, and red kidney beans based complementary food. N. Afr. J. Food Nutr. Res. 2023, 7, 20–30. [Google Scholar] [CrossRef]
- Wiesinger, J.A.; Marsolais, F.; Glahn, R.P. Health Implications and Nutrient Bioavailability of Bioactive Compounds in Dry Beans and Other Pulses. In Dry Beans and Pulses; Wiley: Hoboken, NJ, USA, 2022; pp. 505–529. [Google Scholar] [CrossRef]
- Cristina Oliveira de Lima, V.; Piuvezam, G.; Leal Lima Maciel, B.; Heloneida de Araújo Morais, A. Trypsin inhibitors: Promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J. Enzym. Inhib. Med. Chem. 2019, 34, 405–419. [Google Scholar] [CrossRef]
- Gupta, A.; Sanwal, N.; Bareen, M.A.; Barua, S.; Sharma, N.; Olatunji, O.J.; Nirmal, N.P.; Sahu, J.K. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Res. Int. 2023, 170, 113046. [Google Scholar] [CrossRef]
- Tarabella, A.; Tarabella, A.; Varese, E.; Buffagni, S. Functional foods. In Food Products Evolution: Innovation Drivers and Market Trends; Springer: Berlin/Heidelberg, Germany, 2019; pp. 117–142. [Google Scholar]
- Boland, M.; Alam, F.; Bronlund, J. Modern technologies for personalized nutrition. In Trends in Personalized Nutrition; Academic Press: Cambridge, MA, USA, 2019; pp. 195–222. [Google Scholar]
- Boukid, F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Peschel, A.O.; Kazemi, S.; Liebichová, M.; Sarraf, S.C.M.; Aschemann-Witzel, J. Consumers’ associative networks of plant-based food product communications. Food Qual. Prefer. 2019, 75, 145–156. [Google Scholar] [CrossRef]
- van Loon, M.P.; Alimagham, S.; Pronk, A.; Fodor, N.; Ion, V.; Kryvoshein, O.; Kryvobok, O.; Marrou, H.; Mihail, R.; Mínguez, M.I. Grain legume production in Europe for food, feed and meat-substitution. Glob. Food Secur. 2023, 39, 100723. [Google Scholar] [CrossRef]
- Siddiq, M.; Uebersax, M.A.; Siddiq, F. Global production, trade, processing and nutritional profile of dry beans and other pulses. In Dry Beans and Pulses: Production, Processing, and Nutrition; Wiley: Hoboken, NJ, USA, 2022; pp. 1–28. [Google Scholar]
- Smýkal, P.; Coyne, C.J.; Ambrose, M.J.; Maxted, N.; Schaefer, H.; Blair, M.W.; Berger, J.; Greene, S.L.; Nelson, M.N.; Besharat, N. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 2015, 34, 43–104. [Google Scholar] [CrossRef]
- Sahasakul, Y.; Aursalung, A.; Thangsiri, S.; Wongchang, P.; Sangkasa-ad, P.; Wongpia, A.; Polpanit, A.; Inthachat, W.; Temviriyanukul, P.; Suttisansanee, U. Nutritional Compositions, Phenolic Contents, and Antioxidant Potentials of Ten Original Lineage Beans in Thailand. Foods 2022, 11, 2062. [Google Scholar] [CrossRef] [PubMed]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef]
- Kambabazi, M.-R.; Okoth, M.; Ngala, S.; Njue, L.; Vasanthakaalam, H. Evaluation of nutrient content in red kidney beans, amaranth leaves, sweet potato roots and carrots cultivated in Rwanda. Afr. J. Food Agric. Nutr. Dev. 2021, 21, 17801–17814. [Google Scholar] [CrossRef]
- Margier, M.; Georgé, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Du Chaffaut, L.; Amiot, M.-J.; Reboul, E. Nutritional composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes. Rev. 2014, 15, 392–407. [Google Scholar] [CrossRef]
- Semba, R.D.; Rahman, N.; Du, S.; Ramsing, R.; Sullivan, V.; Nussbaumer, E.; Love, D.; Bloem, M.W. Patterns of Legume Purchases and Consumption in the United States. Front. Nutr. 2021, 8, 732237. [Google Scholar] [CrossRef]
- Bosmali, I.; Giannenas, I.; Christophoridou, S.; Ganos, C.G.; Papadopoulos, A.; Papathanasiou, F.; Kolonas, A.; Gortzi, O. Microclimate and Genotype Impact on Nutritional and Antinutritional Quality of Locally Adapted Landraces of Common Bean (Phaseolus vulgaris L.). Foods 2023, 12, 1119. [Google Scholar] [CrossRef]
- Singh, N.; Jain, P.; Ujinwal, M.; Langyan, S. Escalate protein plates from legumes for sustainable human nutrition. Front. Nutr. 2022, 9, 977986. [Google Scholar] [CrossRef]
- Carbas, B.F.C. Potential of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment. Ph.D. Thesis, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal, 2020. [Google Scholar]
- Bai, Q.; Li, M.; Zhou, J.; Imran, A.; de Souza, T.S.P.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Influence of Processing Methods on Phytochemical Composition of Different Varieties of Beans (Phaseolus vulgaris). Food Rev. Int. 2023, 40, 1941–1979. [Google Scholar] [CrossRef]
- Fabbri, A.D.T.; Crosby, G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef]
- Green, K. Plant-Based Bean Cookbook: 70 Vegan Recipes for Bean Lovers; Sourcebooks, Inc.: Naperville, IL, USA, 2021. [Google Scholar]
- Hall, C.; Hillen, C.; Garden Robinson, J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Messou, T.; Adrien, K.M.; Cyrile, G.K.; Kablan, T. Effect of cooking time on the nutritional and anti-nutritional properties of red and black beans of Phaseolus lunatus (L.) consumed in south and east of Côte d’Ivoire. GSC Biol. Pharm. Sci. 2023, 22, 269–281. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. Whole grains and pulses: A comparison of the nutritional and health benefits. J. Agric. Food Chem. 2014, 62, 7029–7049. [Google Scholar] [CrossRef]
- Farinde, E.O.; Olanipekun, O.T.; Olasupo, R.B. Nutritional composition and antinutrients content of raw and processed lima bean (Phaseolus lunatus). Ann. Food Sci. Technol 2018, 19, 250–264. [Google Scholar]
- Adamu, G.; Ezeokoli, O.; Dawodu, A.; Adebayo-Oyetoro, A.; Ofodile, L. Macronutrients and micronutrients profile of some underutilized beans in south western Nigeria. Int. J. Biochem. Res. Rev. 2015, 7, 80–89. [Google Scholar] [CrossRef]
- Kim, I.-S.; Kim, C.-H.; Yang, W.-S. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health—A Current Perspective. Int. J. Mol. Sci. 2021, 22, 4054. [Google Scholar] [CrossRef]
- Thakur, P.; Kumar, K.; Ahmed, N.; Yadav, A.N.; Kumar, S.; Rizvi, Q.U.E.H.; Chauhan, D.; Jan, S. Impact of diverse processing treatments on nutritional and anti-nutritional characteristics of soybean (Glycine max L.). J. Appl. Biol. Biotechnol. 2022, 10, 97–105. [Google Scholar] [CrossRef]
- Cai, J.-S.; Feng, J.-Y.; Ni, Z.-J.; Ma, R.-H.; Thakur, K.; Wang, S.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends Food Sci. Technol. 2021, 112, 676–689. [Google Scholar] [CrossRef]
- Wallace, T.C.; Murray, R.; Zelman, K.M. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients 2016, 8, 766. [Google Scholar] [CrossRef]
- Labba, I.-C.M.; Frøkiær, H.; Sandberg, A.-S. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Res. Int. 2021, 140, 110038. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Kajla, P.; Shobhit, A. Chemistry, Nutrient Composition and Quality of Faba Beans. In Faba Bean: Chemistry, Properties and Functionality; Springer: Berlin/Heidelberg, Germany, 2022; pp. 75–96. [Google Scholar]
- Dhull, S.B.; Kidwai, M.K.; Noor, R.; Chawla, P.; Rose, P.K. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Sci. 2022, 4, e129. [Google Scholar] [CrossRef]
- Dahiya, P.K.; Linnemann, A.R.; Van Boekel, M.A.J.S.; Khetarpaul, N.; Grewal, R.B.; Nout, M.J.R. Mung Bean: Technological and Nutritional Potential. Crit. Rev. Food Sci. Nutr. 2015, 55, 670–688. [Google Scholar] [CrossRef] [PubMed]
- Chandrasiri, S.D.; Liyanage, R.; Vidanarachchi, J.K.; Weththasinghe, P.; Jayawardana, B.C. Does Processing have a Considerable Effect on the Nutritional and Functional Properties of Mung Bean (Vigna radiata)? Procedia Food Sci. 2016, 6, 352–355. [Google Scholar] [CrossRef]
- Shah, H.; Khan, U.; Alam, S.; Shad, A.; Iqbal, Z.; Parveen, S. Effect of home cooking on the retention of various nutrients in commonly consumed pulses in Pakistan. Sarhad J. Agric 2011, 27, 279. [Google Scholar]
- Li, H.; Zou, L.; Li, X.-Y.; Wu, D.-T.; Liu, H.-Y.; Li, H.-B.; Gan, R.-Y. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2335–2362. [Google Scholar] [CrossRef]
- Moreno-Jiménez, M.R.; Cervantes-Cardoza, V.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Estrella, I.; García-Gasca, T.d.J.; Herrera-Carrera, E.; Díaz-Rivas, J.O.; Rocha-Guzmán, N.E. Phenolic composition changes of processed common beans: Their antioxidant and anti-inflammatory effects in intestinal cancer cells. Food Res. Int. 2015, 76, 79–85. [Google Scholar] [CrossRef]
- Mutari, B.; Sibiya, J.; Matova, P.M.; Gasura, E.; Simango, K. Drought stress impact on agronomic, shoot, physiological, canning and nutritional quality traits of navy beans (Phaseolus vulgaris L.) under field conditions in Zimbabwe. Field Crops Res. 2023, 292, 108826. [Google Scholar] [CrossRef]
- Maitresya, L.B.; Surya, R. Development of tempeh made from soybeans, black-eyed beans, and winged beans. IOP Conf. Ser. Earth Environ. Sci. 2023, 1200, 012008. [Google Scholar] [CrossRef]
- Messina, V. Nutritional and health benefits of dried beans. Am. J. Clin. Nutr. 2014, 100, 437S–442S. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Luna-Vital, D.A.; Morales-Hernandez, N.; Contreras, J.; Villaseñor-Tapia, E.C.; Fragoso-Medina, J.A.; Mojica, L. Nutritional, bioactive components and health properties of the milpa triad system seeds (corn, common bean and pumpkin). Front. Nutr. 2023, 10, 1169675. [Google Scholar] [CrossRef] [PubMed]
- Abioye, V.; Olanipekun, B.; Omotosho, O. Effect of varieties on the proximate, nutritional and anti-nutritional composition of nine variants of African yam bean seeds (Sphenostylis stenocarpa). Food Sci. Technol. 2015, 1, 17–21. [Google Scholar]
- Mofunanya, A. Changes in germination and biochemical composition of Phaseolus lunatus (lima bean) as affected by Acanthoscelides obtectus SAY infestation. J. Appl. Life Sci. Int. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Ogechukwu, O.C.; Okoye, J.I. Effect of heat processing treatments on the nutrient and anti-nutrient contents of lima bean (Phaseolus lunatus) flour. Int. J. Food Sci. Nutr. 2017, 2, 13–17. [Google Scholar]
- Soomro, H.; Soomro, A.H.; Haider, M.S.; Tara, O.M. Evaluation of nutritional profile of pulses consumed in Pakistan. J. Pure Appl. Agric. 2020, 5, 27–33. [Google Scholar]
- Kamboj, R.; Nanda, V. Proximate composition, nutritional profile and health benefits of legumes—A review. Legume Res. Int. J. 2018, 41, 325–332. [Google Scholar] [CrossRef]
- Abebe, B.K.; Alemayehu, M.T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res. 2022, 10, 100383. [Google Scholar] [CrossRef]
- Nasir, M.; Sidhu, J.S.; Sogi, D.S. Processing and Nutritional Profile of Mung Bean, Black Gram, Pigeon Pea, Lupin, Moth Bean, and Indian Vetch. In Dry Beans and Pulses; Wiley: Hoboken, NJ, USA, 2022; pp. 431–452. [Google Scholar]
- Sangsukiam, T.; Duangmal, K. Changes in bioactive compounds and health-promoting activities in adzuki bean: Effect of cooking conditions and in vitro simulated gastrointestinal digestion. Food Res. Int. 2022, 157, 111371. [Google Scholar] [CrossRef]
- Blair, M.; Li, H.; Nekkalapudi, L.; Becerra, V.; Paredes, M. Nutritional Traits of Beans (Phaseolus vulgaris): Nutraceutical Characterization and Genomics. In Compendium of Crop Genome Designing for Nutraceuticals; Springer: Berlin/Heidelberg, Germany, 2023; pp. 611–638. [Google Scholar]
- Seidu, K.; Osundahunsi, O.; Osamudiamen, P. Nutrients assessment of some lima bean varieties grown in southwest Nigeria. Int. Food Res. J. 2018, 25, 848–853. [Google Scholar]
- Agarwal, S.; Chauhan, E.S. Adzuki beans-physical and nutritional characteristics of beans and its health benefits. Int. J. Health Sci. Res 2019, 9, 304–310. [Google Scholar]
- Lo Turco, V.; Potortì, A.G.; Rando, R.; Ravenda, P.; Dugo, G.; Di Bella, G. Functional properties and fatty acids profile of different beans varieties. Nat. Prod. Res. 2016, 30, 2243–2248. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.; Barreira, J.C.; Oliveira, M.B.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Chaurasia, S. Green beans. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 289–300. [Google Scholar]
- Kilua, A.; Chihiro, H.; Han, K.H.; Homma, K. Whole kidney bean (Phaseolus vulgaris) and bean hull reduce the total serum cholesterol, modulate the gut microbiota and affect the caecal fermentation in rats. Bioact. Carbohydr. Diet. Fibre 2020, 24, 100232. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Althwab, S.; Qiu, H.; Zbasnik, R.; Urrea, C.; Carr, T.P.; Schlegel, V. Pinto beans (Phaseolus vulgaris L.) lower non-HDL cholesterol in hamsters fed a diet rich in saturated fat and act on genes involved in cholesterol homeostasis. J. Nutr. 2019, 149, 996–1003. [Google Scholar] [CrossRef]
- Kan, L.; Nie, S.; Hu, J.; Wang, S.; Cui, S.W.; Li, Y.; Xu, S.; Wu, Y.; Wang, J.; Bai, Z. Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars. Food Chem. Toxicol. 2017, 108, 467–477. [Google Scholar] [CrossRef]
- Tor-Roca, A.; Garcia-Aloy, M.; Mattivi, F.; Llorach, R.; Andres-Lacueva, C.; Urpi-Sarda, M. Phytochemicals in legumes: A qualitative reviewed analysis. J. Agric. Food Chem. 2020, 68, 13486–13496. [Google Scholar] [CrossRef]
- Marventano, S.; Izquierdo Pulido, M.; Sánchez-González, C.; Godos, J.; Speciani, A.; Galvano, F.; Grosso, G. Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutr 2017, 20, 245–254. [Google Scholar] [CrossRef]
- Kirkpatrick, C.F.; Sikand, G.; Petersen, K.S.; Anderson, C.A.M.; Aspry, K.E.; Bolick, J.P.; Kris-Etherton, P.M.; Maki, K.C. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J. Clin. Lipidol. 2023, 17, 428–451. [Google Scholar] [CrossRef]
- Doma, K.; Folinar, K.; Ramdath, D.D.; Wolever, T.M.S.; Duncan, A.M. Canned Beans Decrease Serum Total and LDL Cholesterol in Adults with Elevated LDL Cholesterol in a 4-wk Multicenter, Randomized, Crossover Study. J. Nutr. 2021, 151, 3701–3709. [Google Scholar] [CrossRef]
- Shea, M.K.; Barger, K.; Rogers, G.T.; Talegawkar, S.A.; Eicher-Miller, H.A.; Booth, S.L. Dietary Intakes of Community-Dwelling Adults in the United States across Older Adulthood: National Health and Nutrition Examination Survey 2015–March 2020. J. Nutr. 2024, 154, 691–696. [Google Scholar] [CrossRef]
- Dai, Z.; Su, D.; Zhang, Y.; Sun, Y.; Hu, B.; Ye, H.; Jabbar, S.; Zeng, X. Immunomodulatory Activity in Vitro and in Vivo of Verbascose from Mung Beans (Phaseolus aureus). J. Agric. Food Chem. 2014, 62, 10727–10735. [Google Scholar] [CrossRef] [PubMed]
- Sangaramoorthy, M.; Koo, J.; John, E.M. Intake of bean fiber, beans, and grains and reduced risk of hormone receptor-negative breast cancer: The San Francisco Bay Area Breast Cancer Study. Cancer Med. 2018, 7, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Dan, X.; Ng, T.B.; Wong, J.H.; Chan, Y.S.; Cheung, R.C.F.; Chan, W.Y. A hemagglutinin isolated from Northeast China black beans induced mitochondrial dysfunction and apoptosis in colorectal cancer cells. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Baxter, B.A.; Oppel, R.C.; Ryan, E.P. Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients 2019, 11, 28. [Google Scholar] [CrossRef]
- Borresen, E.C.; Brown, D.G.; Harbison, G.; Taylor, L.; Fairbanks, A.; O’Malia, J.; Bazan, M.; Rao, S.; Bailey, S.M.; Wdowik, M.; et al. A Randomized Controlled Trial to Increase Navy Bean or Rice Bran Consumption in Colorectal Cancer Survivors. Nutr. Cancer 2016, 68, 1269–1280. [Google Scholar] [CrossRef]
- Peddio, S.; Padiglia, A.; Cannea, F.B.; Crnjar, R.; Zam, W.; Sharifi-Rad, J.; Rescigno, A.; Zucca, P. Common bean (Phaseolus vulgaris L.) α-amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Phytother. Res. 2022, 36, 2803–2823. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Thompson, A.M.; Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 94–103. [Google Scholar] [CrossRef]
- McRae, M.P. Dietary Fiber Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2018, 17, 44–53. [Google Scholar] [CrossRef]
- Delcour, J.A.; Aman, P.; Courtin, C.M.; Hamaker, B.R.; Verbeke, K. Prebiotics, Fermentable Dietary Fiber, and Health Claims. Adv. Nutr. 2016, 7, 1–4. [Google Scholar] [CrossRef]
- Agostoni, C.V. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar]
- Reverri, E.J.; Randolph, J.M.; Steinberg, F.M.; Kappagoda, C.T.; Edirisinghe, I.; Burton-Freeman, B.M. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome. Nutrients 2015, 7, 6139–6154. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Díaz-López, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Fitó, M.; Serra-Majem, L.; Arós, F. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 2018, 37, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Hosseini, S.; Hosseinpour-Niazi, S.; Azizi, F. Legume consumption increase adiponectin concentrations among type 2 diabetic patients: A randomized crossover clinical trial. Endocrinología Diabetes y Nutrición 2019, 66, 49–55. (In English) [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Zafar, M.I.; Mills, K.E.; Zheng, J.; Regmi, A.; Hu, S.Q.; Gou, L.; Chen, L.-L. Low-glycemic index diets as an intervention for diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019, 110, 891–902. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef]
- Kazemi, M.; McBreairty, L.E.; Chizen, D.R.; Pierson, R.A.; Chilibeck, P.D.; Zello, G.A. A Comparison of a Pulse-Based Diet and the Therapeutic Lifestyle Changes Diet in Combination with Exercise and Health Counselling on the Cardio-Metabolic Risk Profile in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial. Nutrients 2018, 10, 1387. [Google Scholar] [CrossRef]
- Gortzi, O.; Dimopoulou, M.; Androutsos, O.; Vraka, A.; Gousia, H.; Bargiota, A. Effectiveness of a Nutrition Education Program for Patients with Type 2 Diabetes Mellitus. Appl. Sci. 2024, 14, 2114. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gupta, K.; Sharma, A.; Das, M.; Ansari, I.A.; Dwivedi, P.D. Health Risks and Benefits of Chickpea (Cicer arietinum) Consumption. J. Agric. Food Chem. 2017, 65, 6–22. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Li, S.; Yue, Y.; Ma, Y.; Ren, G. Convenient food made of extruded adzuki bean attenuates inflammation and improves glycemic control in patients with type 2 diabetes: A randomized controlled trial. Ther. Clin. Risk Manag. 2018, 14, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Nadeau, B.; Shannon, C.; Tincopa, M. Evaluation of Dietary Approaches for the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review. Nutrients 2019, 11, 3064. [Google Scholar] [CrossRef] [PubMed]
- Mirizzi, A.; Franco, I.; Leone, C.M.; Bonfiglio, C.; Cozzolongo, R.; Notarnicola, M.; Giannuzzi, V.; Tutino, V.; De Nunzio, V.; Bruno, I.; et al. Effects of Some Food Components on Non-Alcoholic Fatty Liver Disease Severity: Results from a Cross-Sectional Study. Nutrients 2019, 11, 2744. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Plauth, M. ESPEN practical guideline: Clinical nutrition in liver disease. Clin. Nutr. 2020, 39, 3533–3562. [Google Scholar] [CrossRef]
- Do, D.T.; Singh, J.; Johnson, S.; Singh, H. Probing the Double-Layered Cotyledon Cell Structure of Navy Beans: Barrier Effect of the Protein Matrix on In Vitro Starch Digestion. Nutrients 2023, 15, 105. [Google Scholar] [CrossRef]
- Papanikolaou, Y. Dietary Patterns with Increased Bean Consumption are Associated with Greater Overall and Shortfall Nutrient Intakes, Lower Added Sugar, and Improved Diet Quality in Adults. 2023; preprint. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Lieberman, H.R.; Fulgoni, V.L., III. Higher-protein diets are associated with higher HDL cholesterol and lower BMI and waist circumference in US adults. J. Nutr. 2015, 145, 605–614. [Google Scholar] [CrossRef]
- Tucker, L.A. Bean Consumption Accounts for Differences in Body Fat and Waist Circumference: A Cross-Sectional Study of 246 Women. J. Nutr. Metab. 2020, 47, 1–9. [Google Scholar] [CrossRef]
- Dodevska, M.S.; Sobajic, S.S.; Djordjevic, P.B.; Dimitrijevic-Sreckovic, V.S.; Spasojevic-Kalimanovska, V.V.; Djordjevic, B.Ι. Effects of total fibre or resistant starch-rich diets within lifestyle intervention in obese prediabetic adults. Eur. J. Nutr. 2016, 55, 127–137. [Google Scholar] [CrossRef]
- Tucker, L.A. Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 US Adults. Nutrients 2023, 15, 460. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Chen, L.; Yang, H.; Gu, J.; Wang, J.; Ren, F. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects. Food Sci. Nutr. 2020, 8, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Grube, B.; Chong, W.-F.; Chong, P.-W.; Riede, L. Weight reduction and maintenance with IQP-PV-101: A 12-week randomized controlled study with a 24-week open label period. Obesity 2014, 22, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.M.; Lepp, D.; Wu, W.; Graf, D.; Hutchinson, A.L.; Robinson, L.E.; Power, K. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. J. Nutr. Biochem. 2017, 49, 89–100. [Google Scholar] [CrossRef]
- Kadyan, S.; Sharma, A.; Arjmandi, B.H.; Singh, P.; Nagpal, R. Prebiotic potential of dietary beans and pulses and their resistant starch for aging-associated gut and metabolic health. Nutrients 2022, 14, 1726. [Google Scholar] [CrossRef]
- Monk, J.M.; Lepp, D.; Wu, W.; Graf, D.; Hutchinson, A.L.; Robinson, L.E.; Power, K. Navy bean supplementation in obesity increases Akkermansia muciniphila abundance and attenuates obesity related impairments in gut barrier function. FASEB J. 2016, 30, 421.2. [Google Scholar] [CrossRef]
- Choi, O.; Lee, Y.; Kang, B.; Cho, S.K.; Kang, Y.; Kang, D.-W.; Lee, S.-B.; Bae, S.-M.; Kim, J. Identification and characterization of gut-associated lactic acid bacteria isolated from the bean bug, Riptortus pedestris (Hemiptera: Alydidae). PLoS ONE 2023, 18, e0281121. [Google Scholar] [CrossRef]
- Hou, D.; Zhao, Q.; Yousaf, L.; Khan, J.; Xue, Y.; Shen, Q. Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J. Funct. Foods 2020, 64, 103687. [Google Scholar] [CrossRef]
- Garcia-Mantrana, I.; Selma-Royo, M.; Collado, M.C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 2018, 9, 319919. [Google Scholar] [CrossRef]
- Nicolás-García, M.; Jimenez Martinez, C.; Perucini-Avendaño, M.; Camacho-Díaz, B.; Jiménez-Aparicio, A.; Dávila Ortiz, G. Phenolic Compounds in Legumes: Composition, Processing and Gut Health. In Legumes Research; IntechOpen: London, UK, 2021; Volume 2. [Google Scholar] [CrossRef]
- Cao, S.-Y.; Zhao, C.-N.; Xu, X.-Y.; Tang, G.-Y.; Corke, H.; Gan, R.-Y.; Li, H.-B. Dietary plants, gut microbiota, and obesity: Effects and mechanisms. Trends Food Sci. Technol. 2019, 92, 194–204. [Google Scholar] [CrossRef]
- Beane, K.E.; Redding, M.C.; Wang, X.; Pan, J.H.; Le, B.; Cicalo, C.; Shin, E.-C. Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: A review. Appl. Biol. Chem. 2021, 64, 36. [Google Scholar] [CrossRef]
- Shi, L.; Mu, K.; Arntfield, S.D.; Nickerson, M.T. Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. J. Food Sci. Technol. 2017, 54, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, B.; Jappe, U.; Novak, N. Allergy to peanut, soybean, and other legumes: Recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Mol. Nutr. Food Res. 2018, 62, 1700446. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Lambré, C.; et al. Re-evaluation of locust bean gum (E 410) as a food additive. EFSA J. 2017, 15, e04646. [Google Scholar]
- Ketnawa, S.; Ogawa, Y. In vitro protein digestibility and biochemical characteristics of soaked, boiled and fermented soybeans. Sci. Rep. 2021, 11, 14257. [Google Scholar] [CrossRef] [PubMed]
- Cirkovic Velickovic, T.D.; Stanic-Vucinic, D.J. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef]
- Power, K.A.; Monk, J.M.; Lepp, D.; Robinson, L.E.; Wu, W.; Carey, C.; Graf, D.; Hussain, A.; McGillis, L. Common Bean and Chickpea Supplemented Diets Beneficially Enhance the Colonic Microenvironment and Reduce Colitis-Associated Inflammation. FASEB J. 2016, 30, 893.6. [Google Scholar] [CrossRef]
- Monk, J.M.; Wu, W.; Hutchinson, A.L.; Pauls, P.; Robinson, L.E.; Power, K.A. Navy and black bean supplementation attenuates colitis-associated inflammation and colonic epithelial damage. J. Nutr. Biochem. 2018, 56, 215–223. [Google Scholar] [CrossRef]
- Gibson, P.R.; Halmos, E.P.; So, D.; Yao, C.K.; Varney, J.E.; Muir, J.G. Diet as a therapeutic tool in chronic gastrointestinal disorders: Lessons from the FODMAP journey. J. Gastroenterol. Hepatol. 2022, 37, 644–652. [Google Scholar] [CrossRef]
- Tuck, C.; Ly, E.; Bogatyrev, A.; Costetsou, I.; Gibson, P.; Barrett, J.; Muir, J. Fermentable short chain carbohydrate (FODMAP) content of common plant-based foods and processed foods suitable for vegetarian-and vegan-based eating patterns. J. Hum. Nutr. Diet. 2018, 31, 422–435. [Google Scholar] [CrossRef]
- Traylor, D.A.; Gorissen, S.H.M.; Phillips, S.M. Perspective: Protein Requirements and Optimal Intakes in Aging: Are We Ready to Recommend More Than the Recommended Daily Allowance? Adv. Nutr. 2018, 9, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; Ronco, C.; Kotanko, P. Whole grains in the renal diet-is it time to reevaluate their role? Blood Purif. 2014, 36, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.R.; White, B.L.; Uebersax, M.A.; Siddiq, M. Dry beans processing, quality evaluation, and nutrition. In Handbook of Vegetables and Vegetable Processing; Wiley: Hoboken, NJ, USA, 2018; pp. 559–587. [Google Scholar]
- Kumar Dahiya, P.; Nout, M.J.R.; van Boekel, M.A.; Khetarpaul, N.; Bala Grewal, R.; Linnemann, A. Nutritional characteristics of mung bean foods. Br. Food J. 2014, 116, 1031–1046. [Google Scholar] [CrossRef]
- Tan, C.; Zhao, Y.; Wang, S. Is a vegetarian diet safe to follow during pregnancy? A systematic review and meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 2586–2596. [Google Scholar] [CrossRef]
- Davies, R.W.; Kozior, M.; Lynch, A.E.; Bass, J.J.; Atherton, P.J.; Smith, K.; Jakeman, P.M. The Effect of Fava Bean (Vicia faba L.) Protein Ingestion on Myofibrillar Protein Synthesis at Rest and after Resistance Exercise in Healthy, Young Men and Women: A Randomised Control Trial. Nutrients 2022, 14, 3688. [Google Scholar] [CrossRef]
- Herrera-Hernández, I.M.; Sánchez, E.; Ramírez-Estrada, C.A.; Anchondo-Páez, J.C.; Pérez-Álvarez, S. Supply of essential and nonessential amino acids, proteins, antioxidants, iron and zinc from the main varieties of beans consumed in Mexico and their potential for biofortification. Not. Sci. Biol. 2023, 15, 11733. [Google Scholar] [CrossRef]
- Gulukun, E.; Ari, M.; Alu, S. Proximate composition and antinutritional factors of differently processed kidney bean (Phaseolus vulgaris) seeds. Niger. J. Anim. Prod. 2020, 47, 169–175. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness 2018, 7, 11–33. [Google Scholar] [CrossRef]
- Leonberg-Yoo, A.K.; Tighiouart, H.; Levey, A.S.; Beck, G.J.; Sarnak, M.J. Urine potassium excretion, kidney failure, and mortality in CKD. Am. J. Kidney Dis. 2017, 69, 341–349. [Google Scholar] [CrossRef]
- Beto, J.A. The role of calcium in human aging. Clin. Nutr. Res. 2015, 4, 1. [Google Scholar] [CrossRef]
- Habibi, N.; Livingstone, K.M.; Edwards, S.; Grieger, J.A. Do older women of reproductive age have better diet quality than younger women of reproductive age? Nutrients 2021, 13, 3830. [Google Scholar] [CrossRef] [PubMed]
- Caut, C.; Leach, M.; Steel, A. Dietary guideline adherence during preconception and pregnancy: A systematic review. Matern. Child Nutr. 2020, 16, e12916. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.A. Dietary guidelines for Americans, 2020–2025. Workplace Health Saf. 2021, 69, 395. [Google Scholar] [CrossRef] [PubMed]
- Martimianaki, G.; Peppa, E.; Valanou, E.; Papatesta, E.M.; Klinaki, E.; Trichopoulou, A. Today’s Mediterranean Diet in Greece: Findings from the National Health and Nutrition Survey—HYDRIA (2013–2014). Nutrients 2022, 14, 1193. [Google Scholar] [CrossRef]
- Libera, J.; Iłowiecka, K.; Stasiak, D. Consumption of processed red meat and its impact on human health: A review. Int. J. Food Sci. Technol. 2021, 56, 6115–6123. [Google Scholar] [CrossRef]
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of plant protein in nutrition, wellness, and health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef]
- Sirtori, C.R. Risks and benefits of soy phytoestrogens in cardiovascular diseases, cancer, climacteric symptoms and osteoporosis. Drug Saf. 2001, 24, 665–682. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the cholesterol-lowering effect of soy protein: A review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients 2017, 9, 324. [Google Scholar] [CrossRef]
- Bielefeld, D.; Grafenauer, S.; Rangan, A. The effects of legume consumption on markers of glycaemic control in individuals with and without diabetes mellitus: A systematic literature review of randomised controlled trials. Nutrients 2020, 12, 2123. [Google Scholar] [CrossRef]
- Neshatbini Tehrani, A.; Hatami, B.; Helli, B.; Yari, Z.; Daftari, G.; Salehpour, A.; Hedayati, M.; Khalili, E.; Hosseini, S.A.; Hekmatdoost, A. The effect of soy isoflavones on non-alcoholic fatty liver disease and the level of fibroblast growth factor-21 and fetuin A. Sci. Rep. 2024, 14, 5134. [Google Scholar] [CrossRef] [PubMed]
- Galchenko, A.; Gapparova, K.; Sidorova, E. The influence of vegetarian and vegan diets on the state of bone mineral density in humans. Crit. Rev. Food Sci. Nutr. 2023, 63, 845–861. [Google Scholar] [CrossRef] [PubMed]
- Luhovyy, B.L.; Mollard, R.C.; Panahi, S.; Nunez, M.F.; Cho, F.; Anderson, G.H. Canned navy bean consumption reduces metabolic risk factors associated with obesity. Can. J. Diet. Pract. Res. 2015, 76, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Kohno, M.; Sugano, H.; Shigihara, Y.; Shiraishi, Y.; Motoyama, T. Improvement of glucose and lipid metabolism via mung bean protein consumption: Clinical trials of GLUCODIA™ isolated mung bean protein in the USA and Canada. J. Nutr. Sci. 2018, 7, e2. [Google Scholar] [CrossRef]
- Huwiler, V.V.; Schönenberger, K.A.; Segesser von Brunegg, A.; Reber, E.; Mühlebach, S.; Stanga, Z.; Balmer, M.L. Prolonged isolated soluble dietary fibre supplementation in overweight and obese patients: A systematic review with meta-analysis of randomised controlled trials. Nutrients 2022, 14, 2627. [Google Scholar] [CrossRef]
- Rondanelli, M.; Barrile, G.C.; Cavioni, A.; Donati, P.; Genovese, E.; Mansueto, F.; Mazzola, G.; Patelli, Z.; Pirola, M.; Razza, C.; et al. A Narrative Review on Strategies for the Reversion of Prediabetes to Normoglycemia: Food Pyramid, Physical Activity, and Self-Monitoring Innovative Glucose Devices. Nutrients 2023, 15, 4943. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Ashtary-Larky, D.; Hosseini, F.; Namkhah, Z.; Mohammadi, S.; Salamat, S.; Nadery, M.; Yarmand, S.; Zamani, M.; Wong, A. The effects of vitamin C supplementation on glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102824. [Google Scholar] [CrossRef]
- Bryant, K.L.; Hansen, C.; Hecht, E.E. Fermentation technology as a driver of human brain expansion. Commun. Biol. 2023, 6, 1190. [Google Scholar] [CrossRef]
- Sharan, S.; Zanghelini, G.; Zotzel, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.N. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf. 2021, 20, 401–428. [Google Scholar] [CrossRef]
- Kiani, A.K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G. Main nutritional deficiencies. J. Prev. Med. Hyg. 2022, 63 (Suppl. 3.), e93–e101. [Google Scholar]
- Sparvoli, F.; Giofré, S.; Cominelli, E.; Avite, E.; Giuberti, G.; Luongo, D.; Rossi, M. Sensory characteristics and nutritional quality of food products made with a biofortified and lectin free common bean (Phaseolus vulgaris L.) flour. Nutrients 2021, 13, 4517. [Google Scholar] [CrossRef]
- Benites-Mena, J.; Vargas-De-La-Cruz, C.; Vergara-Valdés, C.; Jave-Nakayo, J.; Ortiz-Viedma, J.; Char, C.; Cepeda, A. Obtaining an Oily Ingredient Rich in PUFAS and Tocopherols and a High-Nutritional-Value Flour from Beans (Phaseolus vulgaris L.) by Supercritical CO2 Extraction. Foods 2023, 13, 36. [Google Scholar] [CrossRef]
- Bosmali, I.; Kotsiou, K.; Matsakidou, A.; Irakli, M.; Madesis, P.; Biliaderis, C.G. Fortification of wheat bread with an alternative source of bean proteins using raw and roasted Phaseolus coccineus flours: Impact on physicochemical, nutritional and quality attributes. Food Hydrocoll. 2025, 158, 110527. [Google Scholar] [CrossRef]
- Wang, Y.; Jian, C. Sustainable plant-based ingredients as wheat flour substitutes in bread making. npj Sci. Food 2022, 6, 49. [Google Scholar] [CrossRef]
- Anosike, F.C.; Chinwendu, O.R.; Nnaemeka, N.A.; Nneka, M.G.; Inyang, P.; Ikechukwu, C.; Prince-Osuji, E.C. Evaluation of baking qualities, functional and physicochemical properties of wheat supplemented with cassava and mung bean flour blends for bread making. Food Bioeng. 2023, 2, 264–272. [Google Scholar] [CrossRef]
- Olakanmi, S.J.; Jayas, D.S.; Paliwal, J.; Chaudhry, M.M.A.; Findlay, C.R.J. Quality Characterization of Fava Bean-Fortified Bread Using Hyperspectral Imaging. Foods 2024, 13, 231. [Google Scholar] [CrossRef]
- Chockchaisawasdee, S.; Mendoza, M.C.; Beecroft, C.A.; Kerr, A.C.; Stathopoulos, C.E.; Fiore, A. Development of a gluten free bread enriched with faba bean husk as a fibre supplement. LWT 2023, 173, 114362. [Google Scholar] [CrossRef]
- Alfaro-Diaz, A.; Escobedo, A.; Luna-Vital, D.A.; Castillo-Herrera, G.; Mojica, C. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2910–2944. [Google Scholar] [CrossRef]
- Nartea, A.; Kuhalskaya, A.; Fanesi, B.; Orhotohwo, O.L.; Susek, K.; Rocchetti, L.; Papa, R. Legume byproducts as ingredients for food applications: Preparation, nutrition, bioactivity, and techno-functional properties. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1953–1985. [Google Scholar] [CrossRef]
- Serrem, C.A.; de Kock, H.L.; Taylor, J.R.N. Nutritional quality, sensory quality and consumer acceptability of sorghum and bread wheat biscuits fortified with defatted soy flour. Int. J. Food Sci. Technol. 2011, 46, 74–83. [Google Scholar] [CrossRef]
- Nurdin, N.M.; Navratilova, H.F.; Ekawidyani, K.R.; Pratiwi, D.; Kurniawan, M.Y. Soy Flour-Based Snack Bar as Potential Snack Alternative for Diabetes Mellitus. J. Gizi Dan Pangan 2020, 15, 125–132. [Google Scholar] [CrossRef]
- Nurdin, N.M.; Navratilova, H.F.; Ekawidyani, K.R.; Kurniawan, M.Y. Soy flour snack bars lower glycaemic response in type 2 diabetes mellitus subjects: A randomised cross-over design. Malays. J. Nutr. 2022, 28, 163–175. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Mahmud, M.C.; Abdi, G.; Wanich, U.; Farooqi, M.Q.U.; Settapramote, N.; Wani, S.A. New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. J. Food Biochem. 2022, 46, e14185. [Google Scholar] [CrossRef]
Database | Keywords | MeSH Terms (PubMed) | Initial Articles | Duplicates Removed | Final Articles for Analysis | Contribution to Study | Reason for Inclusion |
---|---|---|---|---|---|---|---|
PubMed | #Beans, #Types, #Diet, #Nutritional profile, #Nutrients, #Bioactive compounds, #Health benefits, #Cardiovascular disease, #Diabetes mellitus, #Non-alcoholic fatty liver disease #Obesity, #Nutrition, and #Diet. | #Beans, #Nutrients, #Nutrition, #Interventions, #Diet, #Health | 147 | 7 | 140 | Provided a broad understanding of the interplay between bean consumption, interventions, and health benefits; MeSH terms ensured precision in the search | Widely recognized as a premier biomedical database, often used for systematic reviews in healthcare research |
Web of Science | #Beans, #Types, #Diet, #Nutritional profile, #Nutrients, #Bioactive compounds, #Health benefits, #NCDs, #Cardiovascular disease, #Diabetes mellitus, #Non-alcoholic fatty liver disease #Obesity, #Nutrition, and #Diet. | N/A (Web of Science doesn’t use MeSH terms) | 180 | 6 | 174 | Enhanced the overall coverage of the literature related to bean nutrients, interventions, and health | Provides a multidisciplinary approach, covering a wide range of scientific disciplines |
Scopus | #Beans, #Nutrition, #Health, #NCDs, #Side Effects and #Evidence-Based Interventions. | #Beans, #Health, #NCDs | 2 | 2 | 0 | Strengthened the evidence base by focusing on beans’ bioactive compounds related to evidence-based interventions; MeSH terms ensured specificity | Renowned for systematic reviews and emphasis on evidence-based interventions in healthcare research |
Cochrane Library | #Beans, #Nutrition, #Health, #Side Effects and #Evidence-Based Interventions. | #Beans, #Nutrition, #Health, #Side effects, #Evidence-Based Interventions | 7 | 3 | 4 | Strengthened the evidence base by focusing on beans’ bioactive compounds related to evidence-based interventions; MeSH terms ensured specificity | Renowned for systematic reviews and emphasis on evidence-based interventions in healthcare research |
Type of Beans | Energy (kcal) | Protein | Carbohydrates | Sugar | Fibers | Fat (Total) | Saturated | Unsaturated | References |
---|---|---|---|---|---|---|---|---|---|
Black beans | 310 | 21.21 | 67.95 | 0 | 4.93 | 2.16 | 0 | 2.16 | [31,32] |
370 | 19.03 | 71.12 | 0 | 5.86 | 1.1 | 0 | 1.1 | ||
Kidney beans | 386.39 | 23 | 70.48 | <0.1 | 20.93 | 1.38 | 0 | 1.38 | [18,21,31,32] |
110 | 9.67 | 20 | <0.1 | 11.6 | 0.28 | 0 | 0.28 | ||
Navy beans | 140 | 24.1 | 38.5 | <0.1 | 4.3 | 1.51 | 0 | 1.51 | [19,31,32] |
127 | 8 | 24 | <0.1 | 9 | 0.6 | 0 | 0.6 | ||
Pinto beans | 143 | 23.7 | 38.5 | <0.1 | 4.1 | 1.24 | 0.14 | 1.1 | [19,28,31,32] |
123 | 8 | 22 | <0.1 | 8 | 0.5 | 0.1 | 0.4 | ||
Great Northern beans | 208 | 23.13 | 23 | <0.1 | 7.77 | 2.09 | 0 | 2.09 | [24,32] |
104 | 7 | 19 | <0.1 | 6 | 0.4 | 0 | 0.4 | ||
Lima beans | 392.28 | 22.47 | 72.75 | 3 | 21.34 | 1.27 | 0 | 1.27 | [18,33] |
115 | 19.35 | 61.65 | 2 | 6 | 1.14 | 0 | 1.14 | ||
Black-eyed beans | 334.61 | 16.59 | 62.81 | 21.92 | 7.82 | 1.89 | 0 | 1.89 | [32,34] |
99 | 6.61 | 17.75 | 10.25 | 7.5 | 0.45 | 0 | 0.45 | ||
Soybeans | 466 | 36.49 | 30.2 | 7.3 | 22.9 | 19.94 | 4.28 | 15.66 | [35,36,37] |
327 | 38 | 21.16 | 3.6 | 17.5 | 1.22 | 0.14 | 0.53 | ||
Garbanzo beans | 378 | 20.47 | 62.95 | 10.7 | 12.2 | 6.04 | 0.603 | 4.108 | [32,38] |
164 | 8.86 | 27.42 | 4.8 | 7.6 | 2.59 | 0.269 | 1.739 | ||
Fava bean | 301 | 22.7 | 30.87 | 14.98 | 15.89 | 1.4 | 0 | 1.4 | [32,39,40,41] |
116 | 8.17 | 20.68 | 14.98 | 5.7 | 0.38 | 0 | 0.38 | ||
Mung beans | 391.37 | 26.30 | 68.39 | 8.47 | 27.85 | 1.4 | 0.025 | 1.375 | [18,42,43,44] |
374 | 10.58 | 54.6 | 5.88 | 17.15 | 1 | 0.025 | 0.975 | ||
Adzuki beans | 386.07 | 26.95 | 67.84 | <0.1 | 17.75 | 0.77 | 0.2 | 0.57 | [18,45] |
329 | 20 | 63 | <0.1 | 13 | 0.5 | 0.2 | 0.3 |
Type of Beans | A (μg) | B1 (mg) | Β2 (mg) | Β3 (mg) | Β6 (mg) | Β9 (μg) | E (mg) | Κ (mg) | C (mg) | References |
---|---|---|---|---|---|---|---|---|---|---|
Black beans | 17 | 2.4 | 0.42 | 1.9 | 2 | 149 | 6.7 | 0.56 | 8.63 | [27,31] |
17 | 0.9 | 0.1 | 1.9 | 0.286 | 128 | 0.21 | 0.56 | 1.32 | ||
Kidney beans | 768 | 0.5 | 0.03 | 0.51 | 6.7 | 130 | 0.90 | 0.56 | 2.67 | [18,19,20,21,22] |
462 | 1.17 | 0.103 | 0.51 | 0.212 | 194 | 0.43 | 0.56 | 0 | ||
Navy beans | n.d. * | 2.2 | 1.68 | 2.188 | 4.28 | 140 | 0.02 | 0.25 | 4.5 | [19,21,22,27] |
n.d. * | 0.431 | 0.12 | 1.181 | 0.251 | 222 | n.d. * | 0.25 | 0 | ||
Pinto beans | - | 4 | n.d. * | 1.174 | 4.74 | 172 | 0.21 | 0.56 | 6.3 | [19,21,22,27] |
818.9 | 0.33 | 0.106 | 1.174 | 0.392 | 210 | 3.51 | 0.56 | 0 | ||
Great Northern beans | n.d.* | 0.88 | 0.19 | 2.1 | 0.49 | 102 | 5 | 0 | 0.01 | [19,22,30,50] |
n.d. * | 0.28 | 0.104 | 1.205 | 0.207 | 90 | 2.5 | 0.01 | 0.01 | ||
Lima beans | 57.2 | 0.99 | 0.2 | 1.99 | 0.49 | 300 | 2.94 | 0.056 | 4.37 | [18,51,52,53] |
20.9 | 0.142 | 0.1 | 1.33 | 0.204 | 34 | 1.92 | 0.056 | 0.03 | ||
Black-eyed beans | 12 | 0.51 | 0.2 | 1.3 | 0.3 | 133 | - | - | 0.0026 | [22,53,54,55] |
0 | 0.345 | 0.094 | 0.846 | 0.171 | 356 | - | 0.007 | 0.0004 | ||
Soybeans | 421 | 0.73 | 0.39 | 3.2 | 6 | 100 | 0.12 | 277 | 47 | [22,35,37,55] |
0 | 0.7 | 0.25 | 2.61 | 0.57 | 305 | 0.12 | 410 | 0 | ||
Garbanzo beans | 67 | 0.477 | 0.212 | 1.541 | 0.535 | 557 | 0.82 | 9 | 4 | [22,38] |
27 | 0.116 | 0.063 | 0.526 | 0.228 | 172 | 0.35 | 4 | 1.3 | ||
Fava beans | 350 | <1 | <1 | 1.5 | <1 | 96 | 0.08 | n.d. * | 33 | [22,40,41,56] |
270 | 0.372 | 0.11 | 1.2 | 0.094 | 58 | 0 | n.d. * | 19.8 | ||
Mung beans | 10.9 | 0.5 | 0.3 | 2.2 | - | - | 12.5 | n.d. * | 10 | [18,42,57] |
13 | 0.05 | 0.102 | 0.817 | 0.054 | 29 | 0 | 22.7 | 10 | ||
Azuki beans | 18 | 0.04 | 0.02 | 0.96 | 0.4 | 278 | 36.87 | n.d. * | 0 | [18,45,58] |
17 | 0 | 0 | 2.63 | 0.351 | 622 | 12.46 | n.d. * | 0 |
Type of Beans | Fe (mg) | Zn (mg) | Mg (mg) | P (mg) | Ca (mg) | Cu (mg) | K (mg) | Na (mg) | References |
---|---|---|---|---|---|---|---|---|---|
Black beans | 5.34 | 3.37 | 180 | 522 | 191 | 1.12 | 1540 | 75 | [19] |
2.10 | 1.12 | 70 | 140 | 27 | 0.209 | 355 | 2 | ||
Kidney beans | 523 | 3.29 | 164 | 612 | 98 | 0.865 | 1490 | 3 | [19] |
144 | 1.07 | 45 | 142 | 28 | 0.242 | 403 | 2 | ||
Navy beans | 5.29 | 3.31 | 180 | 523 | 229 | 1.14 | 1470 | 0 | [19] |
2.36 | 1.03 | 53 | 144 | 69 | 389 | 389 | 0 | ||
Pinto beans | 5.4 | 3.43 | 170 | 507 | 161 | 0.978 | 1510 | 2 | [19] |
2.09 | 3.31 | 50 | 147 | 46 | 0.219 | 436 | 2 | ||
Great Northern beans | 180 | 3.45 | 176 | 519 | 192 | 1.08 | 1520 | 3 | [19] |
53 | 0.88 | 50 | 165 | 68 | 0.247 | 391 | 2 | ||
Lima beans | 8.7 | 4.5 | 312 | 295 | 225 | 0.82 | 1375.48 | 19.59 | [18,33,60] |
7.25 | 4 | 225 | 224.6 | 189 | 0.82 | 887 | 10.1 | ||
Black-eyed beans | 5.86 | 4.68 | 71.28 | 121.91 | 71.56 | 0.458 | 1377 | 40.20 | [22,34] |
4.29 | 2.21 | 91 | 267 | 41 | 0.458 | 475 | 7 | ||
Soybeans | 5 | 2 | 280 | 704 | 1570 | 4.07 | 1506 | 179.7 | [34,35,37] |
4.42 | 0.99 | 280 | 674 | 241 | 4.07 | 2384 | 2 | ||
Garbanzo beans | 4.31 | 2.76 | 79 | 252 | 57 | 0.656 | 718 | 24 | [38] |
2.89 | 1.53 | 48 | 168 | 49 | 0.352 | 291 | 11 | ||
Fava beans | 7 | 5.67 | 102 | 1117 | 172 | 2.01 | 1285 | 27 | [22,39,40,41] |
5.44 | 4.18 | 76 | 194 | 117 | 1.48 | 1220 | 4 | ||
Mung beans | 3.97 | 2.55 | 139.78 | 357.52 | 96.85 | 1 | 972.51 | 21.54 | [18,34,42,44,57] |
3.09 | 1.84 | 32.87 | 199.98 | 65.17 | 0.64 | 232.2 | 4 | ||
Azuki beans | 7.56 | 2.33 | 114.79 | 244.63 | 71.53 | 1.1 | 1449.51 | 73.97 | [18,45,58,61] |
4.6 | 4 | 119 | 17 | 66 | 1 | 1223 | 5 |
Author/(Year) | Study | Age Group | Participants | Conclusions |
---|---|---|---|---|
Kirkpatrick et al. (2023) [70] | National Study (1999–2019) | 18- ≥ 60 years old | 170.000 patients with dyslipidemia | Healthy diet pattern that includes bean consumption, improves lipidemic profile and other CVD risk factors |
Doma et al. (2023) [71] | Multicenter, randomized, crossover Study | 48.1 ± 14.2 years old | 73 patients with elevated LDL Cholesterol | Daily consumption of canned beans impacts on minimizing total cholesterol and LDL |
Shea et al. (2024) [72] | National Survey 2015–March 2020 | 60- ≥ 80-years old | 3094 elderly | The older the lower consumption of beans, the lower plant-based protein intake and protection against diseases |
Sangaramoorthy et al. (2018) [74] | Population-based case-control study conducted from 1995–2004) (the San Francisco Bay Area Breast Cancer Study) | 35–75 years old | 2133 breast cancer patients | Reduced breast cancer risk with a higher intake of bean fibers |
Baxter et al. (2019) [77] | Randomized controlled trial | 60.9 ± 11 years old | 18 colorectal cancer survivors | Different types and dose of beans protect against colon cancer |
Borresen et al. (2016) [78] | Randomized controlled single-blinded trial | 58–65 years old | 29 colorectal cancer survivors | Increased bean consumption associates with colorectal cancer chemoprevention |
Reverri et al. (2015) [84] | Randomized controlled crossover trial | ≥18 years old | 12 patients with metabolic syndrome | Postprandial insulin levels and antioxidant endpoints are lower after bean consumption |
Becerra-Tomás et al. (2018) [85] | Randomized, multi-center, parallel-group clinical trial between October 2003–2010 (the PREDIMED study) | 67 ± 6 years old | 3349 patients with type 2 diabetes mellitus | Beans consumption is inversely associated with type 2 diabetes incidence |
Mirmiran et al. (2019) [86] | Randomized crossover clinical trial | 58.1 ± 6 years old | 24 women with type 2 diabetes mellitus | Beans consumption increases adiponectin concentrations among type 2 diabetic patients |
Kazemi et al. (2018) [90] | Randomized controlled trial. | 18–35 years old | 95 women with polycystic ovary syndrome | Beans consumption seems to minimize cardio-metabolic disease risk factors |
Liu et al. (2018) [93] | Randomized controlled trial | 30–60 years old | 120 patients with type 2 diabetes mellitus | Lower steep increase in postprandial insulin levels and minimizing inflammation |
Mirizzi et al. (2019) [96] | Cross-sectional Study | 30- ≥ 60 years old | 138 non-alcoholic fatty liver patients | A higher intake of beans is associated with lower NAFLD, serum cholesterol, and blood pressure |
Papanikolaou (2023) [99] | National Health and Nutritional Examination study (2001–2018) | ≥19 years old | 44.184 adults | Beans consumption may offer improvements in weight-related measures (BMI, body weight, waist circumstances) and minimize abdominal obesity |
Dodevska et al. (2016) [102] | Randomized controlled trial | 45–74 years old | 47 overweight and obese pre-diabetic patients | A regular-fiber diet affects glycemic control |
Tucker et al. (2023) [103] | National Health and Nutritional Examination study (2011–2018) | 22.5–66 years old | 15,185 adults | Beans consumption impacts on less weight gain and abdominal obesity |
Wang et al. (2020) [104] | Randomized, double-blinded, controlled trial | 18–65 years old | 120 obese adults | Beans extracts consumption impacts on weight loss in a short time period |
Grube et al. (2014) [105] | Randomized controlled trial | 18–60 years old | 172 adults | Helps maintain a healthy body weight |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimopoulou, M.; Vareltzis, P.; Gortzi, O. A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases. Appl. Sci. 2024, 14, 10215. https://doi.org/10.3390/app142210215
Dimopoulou M, Vareltzis P, Gortzi O. A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases. Applied Sciences. 2024; 14(22):10215. https://doi.org/10.3390/app142210215
Chicago/Turabian StyleDimopoulou, Maria, Patroklos Vareltzis, and Olga Gortzi. 2024. "A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases" Applied Sciences 14, no. 22: 10215. https://doi.org/10.3390/app142210215
APA StyleDimopoulou, M., Vareltzis, P., & Gortzi, O. (2024). A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases. Applied Sciences, 14(22), 10215. https://doi.org/10.3390/app142210215