Evaluation of the Nutritional Value of Insect-Based Complete Pet Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition and Ingredient List of Foods
2.2. Proximate Analyses
2.3. Calcium and Phosphorus
2.4. Dietary Fiber Fractions
2.4.1. Neutral-Detergent Fiber
2.4.2. Acid-Detergent Fiber
2.4.3. Acid-Detergent Lignin
2.4.4. Hemicellulose and Cellulose
2.5. Energy Value
2.6. FEDIAF Nutirtional Guidelines
2.7. Statistical Analyses
3. Results
3.1. Chemical Composition of Foods
3.2. Calcium and Phosphorus
3.3. Dietary Fibee Fractions (NDF, ADF, ADL, HCEL, and CEL)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dodd, S.; Cave, N.; Abood, S.; Shoveller, A.K.; Adolphe, J.; Verbrugghe, A. An observational study of pet feeding practices and how these have changed between 2008 and 2018. Vet. Rec. 2020, 186, 643. [Google Scholar] [CrossRef] [PubMed]
- Fantinati, M.; Dufayet, R.; Rouch-Buck, P.; Priymenko, N. Relationship between a plant-based ‘vegan’ pet food and clinical manifestation of multiple nutrient deficiencies in two cats. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Vinassa, M.; Vergnano, D.; Valle, E.; Giribaldi, M.; Nery, J.; Prola, L. Profiling Italian cat and dog owners’ perceptions of pet food quality traits. BMC Vet. Res. 2020, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Stoll-Kleemann, S.; Schmidt, U.J. Reducing meat consumption in developed and transition countries to counter climate change and biodiversity loss: A review of influence factors. Reg. Environ. Change 2017, 17, 1261–1277. [Google Scholar] [CrossRef]
- Ahmetoğlu, S.; Tanik, A. Management of Carbon Footprint and Determination of GHG Emission Sources in Construction Sector. Int. J. Environ. Geoinform. 2020, 7, 191–204. [Google Scholar] [CrossRef]
- Trasca, T.I.; Ocnean, M.; Gherman, R.; Lile, R.A.; Balan, I.M.; Brad, I. Synergy between the waste of natural resources and food waste related to meat consumption in Romania. Agriculture 2024, 14, 644. [Google Scholar] [CrossRef]
- Valdés, F.; Villanueva, V.; Durán, E.; Campos, F.; Avendaño, C.; Sánchez, M. Insects as Feed for Companion and Exotic Pets: A Current Trend. Animals 2022, 12, 1450. [Google Scholar] [CrossRef]
- Gałęcki, R.; Hanuszewska-Dominiak, M.; Kaczmar, E. Edible insects as a source of dietary protein for companion animals with food responsive enteropathies—Perspectives and possibilities. Pol. J. Vet. Sci. 2024, 27, 309–318. [Google Scholar] [CrossRef]
- van Huis, A.; Rumpold, B. Strategies to convince consumers to eat insects? A review. Food Qual. Prefer. 2023, 110, 104927. [Google Scholar] [CrossRef]
- van Huis, A. Edible insects: Challenges and prospects. Entomol. Res. 2022, 52, 161–177. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Dalle Zotte, A.; Danieli, P.P.; De Angelis, A. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef]
- Shah, A.A.; Totakul, P.; Matra, M.; Cherdthong, A.; Hanboonsong, Y.; Wanapat, M. Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim. Biosci. 2022, 35, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Commission Implementing Regulation (EU) 2017/2469 of 20 December 2017 Laying Down Administrative and Scientific Requirements for Applications Referred to in Article 10 of Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods; European Union: Luxemburg, 2017.
- Commission Regulation (EU) 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No. 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other Than Fur Animals, with Protein Derived from Animals; European Union: Luxemburg, 2021.
- Commission Regulation (EU) 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No. 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No. 142/2011 as Regards the Provisions on Processed Animal Protein; European Union: Luxemburg, 2017.
- EFSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Nowakowski, A.C.; Miller, A.C.; Miller, M.E.; Xiao, H.; Wu, X. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 2022, 62, 3499–3508. [Google Scholar] [CrossRef] [PubMed]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Bogusz, R.; Pobiega, K.; Kowalczewski, P.Ł.; Onopiuk, A.; Szulc, K.; Wiktor, A. Nutritional value and microbiological aspects of dried yellow mealworm (Tenebrio molitor L.) larvae pretreated with a pulsed electric field. Appl. Sci. 2024, 14, 968. [Google Scholar] [CrossRef]
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key to good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef]
- Vanqa, N.; Mshayisa, V.V.; Basitere, M. Proximate, physicochemical, techno-functional and antioxidant properties of three edible insect (Gonimbrasia belina, Hermetia illucens and Macrotermes subhylanus) flours. Foods 2022, 11, 976. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Zhou, S.; Duan, H.; Guo, J.; Yan, W. Nutritional composition, health benefits, and application value of edible insects: A review. Foods 2022, 11, 3961. [Google Scholar] [CrossRef]
- Phuah, E.-T.; Lee, Y.-Y.; Tang, T.-K.; Hong, S.-P.; Lim, S.A. Physicochemical characterization of edible insect oils: Insights into fatty acid composition, thermal behavior and quality parameters. ASEAN J. Sci. Technol. Dev. 2024, 40, 4. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Lucas-González, R.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Assessment of chemical composition and antioxidant properties of defatted flours obtained from several edible insects. Food Sci. Technol. Int. 2021, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Pastrana, I.; Rebollo-Hernanz, M.; Benitez, V.; Álvarez-Rivera, G.; Viejo, J.L. Investigating edible insects as a sustainable food source: Nutritional value and techno-functional and physiological properties. Food Funct. 2021, 12, 6309–6322. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.S.; Olivry, T.; Prélaud, P. Critically appraised topic on adverse food reactions of companion animals (2): Common food allergen sources in dogs and cats. BMC Vet. Res. 2016, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Premrov Bajuk, B.; Zrimšek, P.; Kotnik, T.; Leonardi, A.; Križaj, I.; Jakovac Strajn, B. Insect protein-based diet as potential risk of allergy in dogs. Animals 2021, 11, 1942. [Google Scholar] [CrossRef]
- Huang, C.; Feng, W.; Xiong, J.; Wang, T.; Wang, W.; Wang, C.; Yang, F. Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: Amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur. Food Res. Technol. 2019, 245, 11–21. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Gomez-Osorio, L.M.; Yepes-Medina, V.; Ballou, A.; Parini, M.; Angel, R. Short and medium chain fatty acids and their derivatives as a natural strategy in the control of necrotic enteritis and microbial homeostasis in broiler chickens. Front. Vet. Sci. 2021, 8, 773372. [Google Scholar] [CrossRef]
- Dhakal, J.; Aldrich, C.G. Use of medium chain fatty acids to mitigate Salmonella typhimurium (ATCC 14028) on dry pet food kibbles. J. Food Prot. 2020, 83, 1505–1511. [Google Scholar] [CrossRef]
- Vecchiato, C.G.; Pinna, C.; Sung, C.H.; Borrelli De Andreis, F.; Suchodolski, J.S.; Pilla, R. Fecal microbiota, bile acids, sterols, and fatty acids in dogs with chronic enteropathy fed a home-cooked diet supplemented with coconut oil. Animals 2023, 13, 502. [Google Scholar] [CrossRef]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Horvat Aleksijević, L. Antimicrobial peptides—Mechanisms of action, antimicrobial effects and clinical applications. Antibiotics 2022, 11, 1417. [Google Scholar] [CrossRef]
- Lehane, M.J. Peritrophic matrix structure and function. Annu. Rev. Entomol. 1997, 42, 525–550. [Google Scholar] [CrossRef] [PubMed]
- Arasukumar, B.; Prabakaran, G.; Gunalan, B.; Moovendhan, M. Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells. Int. J. Biol. Macromol. 2019, 135, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; The European Pet Food Industry Federation: Bruxelles, Belgium, 2024. [Google Scholar]
- FEDIAF. Code of Good Labelling Practice for Pet Food; The European Pet Food Industry Federation: Bruxelles, Belgium, 2019. [Google Scholar]
- Regulation (EC), No. 767/2009, Regulation (EC) No. 767/2009 of the European Parliament and of the Council of 13 July 2009 on the Placing on the Market and Use of Feed, Amending European Parliament and Council Regulation (EC) No. 1831/2003 and Repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC; European Union: Luxemburg, 2004.
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Pomeranz, Y.; Meloan, C.E. Carbohydrates. In Food Analysis: Theory and Practice; Springer: Boston, MA, USA, 1994. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dogs and Cats; National Research Council: Washington, DC, USA, 2006. [Google Scholar]
- Acuff, H.G.; Aldrich, C.G. A Review of application strategies and efficacy of probiotics in pet food. In Antibiotics and Probiotics in Animal Food-Impact and Regulation; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Bosch, G.; Swanson, K.S. Effect of using insects as feed on animals: Pet dogs and cats. J. Insects Food Feed. 2021, 7, 795–805. [Google Scholar] [CrossRef]
- Bosch, G.; Zhang, S.; Oonincx, D.G.A.B.; Hendriks, W.H. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, e29. [Google Scholar] [CrossRef]
- Ngalo, S.; Mukhebi, A.; Otieno, K. Dogs owners’ perception on the use of black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae) larvae as an alternative source of protein in dog food in Kenya. East. Afr. J. Agric. Biotechnol. 2023, 6, 116–128. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental impact of the production of mealworms as a protein source for humans: A life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor larvae) as an alternative protein source for monogastric animals: A review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Murakami, F.Y.; de Lima, D.C.; Souza, C.M.M.; Kaele, G.B.; Oliveira, S.G.; Félix, A.P. Digestibility and palatability of isolated porcine protein in dogs. Ital. J. Anim. Sci. 2018, 17, 1070–1076. [Google Scholar] [CrossRef]
- Urrego, M.I.G.; Laura, L.F.; De Melo Santos, K.; Ernandes, M.C.; Monti, M.; De Souza, D.F. Effects of different protein sources on fermentation metabolites and nutrient digestibility of brachycephalic dogs. J. Nutr. Sci. 2017, 6, e46. [Google Scholar] [CrossRef]
- Donadelli, R.A.; Aldrich, C.G.; Jones, C.K.; Beyer, R.S. The amino acid composition and protein quality of various egg, poultry meal by-products, and vegetable proteins used in the production of dog and cat diets. Poult. Sci. 2019, 98, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Fiacco, D.C.; Lowe, J.A.; Wiseman, J.; White, G.A. Evaluation of vegetable protein in canine diets: Assessment of performance and apparent ileal amino acid digestibility using a broiler model. J. Anim. Physiol. Anim. Nutr. 2018, 102, e442–e448. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Banton, S.; Bosch, G.; Hendriks, W.H.; Shoveller, A.K. Beyond the bowl: Understanding amino acid requirements and digestibility to improve protein quality metrics for dog and cat foods. In Nutrition and Metabolism of Dogs and Cats; Wu, G., Ed.; Springer Nature: Cham, Switzerland, 2024; Volume 1446, pp. 99–111. [Google Scholar]
- Rahmawati, T.; Fuah, A.M.; Arifin, H.S.; Syukur, M.; Salundik, D. Influence of Tenebrio molitor L. supplementation on egg quality and omega-3 content. J. Ilmu Ternak Veteriner 2022, 27, 28–34. [Google Scholar] [CrossRef]
- Kazimierska, K.; Biel, W.; Witkowicz, R.; Karakulska, J.; Stachurska, X. Evaluation of nutritional value and microbiological safety in commercial dog food. Vet. Res. Commun. 2021, 45, 111–128. [Google Scholar] [CrossRef]
- Stercova, E.; Strakova, E.; Tsponova, J.; Grmelova, M.; Janacova, K.; Muchova, K. Nutritional evaluation of commercial dry dog foods available on the Czech market. J. Anim. Physiol. Anim. Nutr. 2022, 106, 614–621. [Google Scholar] [CrossRef]
- Kim, T.K.; Cha, J.Y.; Yong, H.I.; Jang, H.W.; Jung, S.; Choi, Y.S. Application of Edible Insects as Novel Protein Sources and Strategies for Improving Their Processing. Food Sci. Anim. Resour. 2022, 42, 372–388. [Google Scholar] [CrossRef]
- Jonas-Levi, A.; Martinez, J.J.I. The high level of protein content reported in insects for food and feed is overestimated. J. Food Compos. Anal. 2017, 62, 184–188. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects 2023, 14, 261. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2280. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. Lesser mealworm (Alphitobius diaperinus L.) larvae oils extracted by pure and binary mixed organic solvents: Physicochemical and antioxidant properties, fatty acid composition, and lipid quality indices. Food Chem. 2023, 408, 135209. [Google Scholar] [CrossRef]
- Sabchuk, T.T.; Risolia, L.W.; Souza, C.M.M.; Félix, A.P.; Maiorka, A.; Oliveira, S.G. Endogenous fat losses and true and apparent fat digestibility in adult and growing dogs fed diets containing poultry offal fat. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, F.J.; Corrada, Y.; Picco, S.J.; Relling, A.E.; Risso, A. Association between dietary polyunsaturated fatty acids and their concentration in blood plasma, red blood cell, and semen of dogs. Open Vet. J. 2023, 13, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Mehler, S.J.; May, L.R.; King, C.; Harris, W.S.; Shah, Z. A prospective, randomized, double-blind, placebo-controlled evaluation of the effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis. Prostaglandins Leukot. Essent. Fatty Acids 2016, 109, 1–7. [Google Scholar] [CrossRef] [PubMed]
- de Santiago, M.S.; Arribas, J.L.G.; Llamas, Y.M.; Becvarova, I.; Meyer, H. Randomized, double-blind, placebo-controlled clinical trial measuring the effect of a dietetic food on dermatologic scoring and pruritus in dogs with atopic dermatitis. BMC Vet. Res. 2021, 17, 354. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 6–22. [Google Scholar] [CrossRef]
- Barroso, F.G.; Sánchez-Muros, M.J.; Segura, M.; Morote, E.; Torres, A.; Ramos, R. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J. Food Compos. Anal. 2017, 62, 8–13. [Google Scholar] [CrossRef]
- Tabata, E.; Kashimura, A.; Kikuchi, A.; Masuda, H.; Miyahara, R.; Hiruma, Y. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018, 8, 19940. [Google Scholar] [CrossRef]
- Jarett, J.K.; Carlson, A.; Rossoni Serao, M.C.; Strickland, J.; Serfilippi, L.; Ganz, H.H. Diets with and without edible cricket support a similar level of diversity in the gut microbiome of dogs. PeerJ 2019, 7, e7661. [Google Scholar] [CrossRef]
- Jian, S.; Zhang, L.; Ding, N.; Yang, K.; Xin, Z.; Hu, M. Effects of black soldier fly larvae as protein or fat sources on apparent nutrient digestibility, fecal microbiota, and metabolic profiles in beagle dogs. Front. Microbiol. 2022, 13, 1044986. [Google Scholar] [CrossRef]
- Alessandri, G.; Argentini, C.; Milani, C.; Turroni, F.; Ossiprandi, M.C.; van Sinderen, D. Catching a glimpse of the bacterial gut community of companion animals: A canine and feline perspective. Microb. Biotechnol. 2020, 13, 1708–1732. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Z.; Yang, R.; Bi, Y.; Xiong, X. The canine gastrointestinal microbiota: Early studies and research frontiers. Gut Microbes 2020, 11, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.A.; Parker, V.J.; Winston, J.A.; Rudinsky, A.J. Dietary fiber aids in the management of canine and feline gastrointestinal disease. J. Am. Vet. Med. Assoc. 2022, 260, S33–S45. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.M.M.; Bastos, T.S.; Kaelle, G.C.B.; Bortolo, M.; Vasconcellos, R.S.; De Oliveira, S.G. Comparison of cassava fiber with conventional fiber sources on diet digestibility, fecal characteristics, intestinal fermentation products, and fecal microbiota of dogs. Anim. Feed. Sci. Technol. 2021, 281, 115092. [Google Scholar] [CrossRef]
- Myint, H.; Iwahashi, Y.; Koike, S.; Kobayashi, Y. Effect of soybean husk supplementation on the fecal fermentation metabolites and microbiota of dogs. Anim. Sci. J. 2017, 88, 1730–1736. [Google Scholar] [CrossRef]
- Aiudi, G.G.; Cicirelli, V.; Maggiolino, A.; Burgio, M.; Bragaglio, A.; Tateo, A. Effect of Pinus taeda hydrolyzed lignin on biochemical profile, oxidative status, and semen quality of healthy dogs. Front. Vet. Sci. 2022, 9, 866112. [Google Scholar] [CrossRef]
- Goi, A.; Simoni, M.; Righi, F.; Visentin, G.; De Marchi, M. Application of a handheld near-infrared spectrometer to predict gelatinized starch, fiber fractions, and mineral content of ground and intact extruded dry dog food. Animals 2020, 10, 91660. [Google Scholar] [CrossRef]
- Prantil, L.R.; Heinze, C.R.; Freeman, L.M. Comparison of carbohydrate content between grain-containing and grain-free dry cat diets and between reported and calculated carbohydrate values. J. Feline Med. Surg. 2018, 20, 349–355. [Google Scholar] [CrossRef]
- Daina, S.; Macri, A. Carbohydrate content assessment in different commercial dogs diets. Sci. Pap. J. Vet. Ser. 2023, 66, 5–9. [Google Scholar] [CrossRef]
- Vuori, K.A.; Hemida, M.; Moore, R.; Salin, S.; Rosendahl, S.; Anturaniemi, J. The effect of puppyhood and adolescent diet on the incidence of chronic enteropathy in dogs later in life. Sci. Rep. 2023, 13, 27866. [Google Scholar] [CrossRef]
- André, A.; Leriche, I.; Chaix, G.; Thorin, C.; Burger, M.; Nguyen, P. Recovery of insulin sensitivity and optimal body composition after rapid weight loss in obese dogs fed a high-protein medium-carbohydrate diet. J. Anim. Physiol. Anim. Nutr. 2017, 101, 21–30. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Ma, Y.; Mai, S.; Li, C. Effects of extrusion on starch molecular degradation, order–disorder structural transition and digestibility—A review. Foods 2022, 11, 62538. [Google Scholar] [CrossRef] [PubMed]
- Summers, S.C.; Stockman, J.; Larsen, J.A.; Zhang, L.; Rodriguez, A.S. Evaluation of phosphorus, calcium, and magnesium content in commercially available foods formulated for healthy cats. J. Vet. Intern. Med. 2020, 34, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Rolinec, M.; Bíro, D.; Gálik, B.; Šimko, M.; Juráček, M.; Tvarožková, K. The nutritive value of selected commercial dry dog foods. Acta Fytotechn. Zootechn. 2016, 19, 25–28. [Google Scholar] [CrossRef]
- Vranić, D.; Korićanac, V.; Trbović, D.; Milićević, D.; Gerić, T.; Dinović-Stojanović, J. Evaluation of content and ratio of calcium and phosphorus in commercially available pet food for dogs and cats. Meat Technol. 2023, 64, 307–311. [Google Scholar] [CrossRef]
- Kępińska-Pacelik, J.; Biel, W.; Witkowicz, R.; Podsiadło, C. Mineral and heavy metal content in dry dog foods with different main animal components. Sci. Rep. 2023, 13, 33224. [Google Scholar] [CrossRef]
- Schmitt, S.; Mack, J.; Kienzle, E.; Alexander, L.G.; Morris, P.J.; Colyer, A. Faecal calcium excretion does not decrease during long-term feeding of a low-calcium diet in adult dogs. J. Anim. Physiol. Anim. Nutr. 2018, 102, 798–805. [Google Scholar] [CrossRef]
- Zafalon, R.V.A.; Risolia, L.W.; Vendramini, T.H.A.; Rodrigues, R.B.A.; Pedrinelli, V.; Teixeira, F.A. Nutritional inadequacies in commercial vegan foods for dogs and cats. PLoS ONE 2020, 15, e0227046. [Google Scholar] [CrossRef]
Nutrient | Unit | MRL | NMaxRL |
---|---|---|---|
Crude protein | g | 18.00 | - |
Crude fat | g | 5.50 | - |
Calcium | g | 0.50 | 2.50 |
Phosphorus | g | 0.40 | 1.60 |
Ca:P | ratio | 1:1 | 2:1 |
Item | DM 1 | CP | EE | CF | CA | NFE | ME |
---|---|---|---|---|---|---|---|
g/100 g | g/100 g DM | kcal/100 g DM | |||||
DIF_1 | 95.92 | 26.08 c | 11.75 d | 5.36 e | 6.05 c | 50.77 b | 381.70 c |
DIF_2 | 95.73 | 23.35 a | 11.67 cd | 3.33 b | 7.43 e | 54.22 d | 389.59 d |
DIF_3 | 95.39 | 23.45 a | 12.04 e | 5.56 e | 4.90 a | 54.05 d | 384.23 c |
DIF_4 | 94.62 | 26.45 d | 11.63 cd | 3.40 b | 5.85 bc | 52.67 c | 403.52 f |
DIF_5 | 94.88 | 24.56 b | 7.58 a | 4.03 bc | 6.11 c | 57.72 g | 371.11 b |
DIF_6 | 94.00 | 23.54 a | 10.43 b | 4.18 c | 6.67 d | 55.18 e | 380.32 c |
DIF_7 | 94.69 | 29.23 e | 13.20 f | 7.16 g | 6.96 d | 43.46 a | 373.10 b |
DIF_8 | 94.67 | 25.68 c | 10.22 b | 6.39 f | 7.48 e | 50.23 b | 362.70 a |
DIF_9 | 94.41 | 33.19 f | 11.40 c | 4.89 d | 5.21 a | 45.32 a | 388.19 d |
DIF_10 | 95.71 | 24.17 a | 11.24 c | 5.65 e | 7.15 e | 51.79 c | 372.82 b |
DIF_11 | 95.84 | 35.75 g | 11.22 c | 2.21 a | 6.69 d | 44.13 a | 402.16 f |
DIF_12 | 94.73 | 24.62 b | 10.45 b | 3.35 b | 5.58 b | 56.00 f | 391.09 d |
DIF_13 | 96.06 | 25.19 bc | 11.77 cd | 3.83 b | 5.72 b | 53.50 c | 393.13 e |
DIF_14 | 94.23 | 26.71 d | 12.86 ef | 4.34 c | 6.79 d | 49.30 b | 391.54 e |
Item | CP | EE |
---|---|---|
g/100 g DM 1 | ||
DIF_1 | 27.33 | 12.31 |
DIF_2 | 23.97 | 11.98 |
DIF_3 | 24.41 | 12.54 |
DIF_4 | 26.22 | 11.53 |
DIF_5 | 26.47 | 8.17 |
DIF_6 | 24.76 | 10.97 |
DIF_7 | 31.34 | 14.15 |
DIF_8 | 28.32 | 11.28 |
DIF_9 | 34.20 | 11.74 |
DIF_10 | 25.94 | 12.06 |
DIF_11 | 35.56 | 11.16 |
DIF_12 | 25.18 | 10.69 |
DIF_13 | 25.63 | 11.97 |
DIF_14 | 27.29 | 13.14 |
FEDIAFMRL | 18.00 | 5.50 |
FEDIAFNMaxRL | ND 2 | ND |
Item | Ca 1 | P | Ca | P | Ca:P |
---|---|---|---|---|---|
g/100 g DM 2 | g/100 g DM 3 | Ratio | |||
DIF_1 | 2.53 f | 0.66 a | 2.65 | 0.69 | 3.82 |
DIF_2 | 1.56 e | 0.78 b | 1.60 | 0.80 | 1.99 |
DIF_3 | 0.78 c | 1.16 e | 0.81 | 1.21 | 0.68 |
DIF_4 | 0.88 c | 1.03 d | 0.87 | 1.02 | 0.86 |
DIF_5 | 0.87 c | 1.16 e | 0.94 | 1.25 | 0.74 |
DIF_6 | 0.84 c | 1.02 d | 0.88 | 1.07 | 0.83 |
DIF_7 | 0.68 b | 0.76 b | 0.73 | 0.81 | 0.89 |
DIF_8 | 1.07 d | 0.90 c | 1.18 | 0.99 | 1.19 |
DIF_9 | 0.38 a | 0.87 bc | 0.39 | 0.90 | 0.43 |
DIF_10 | 0.95 d | 1.05 d | 1.02 | 1.13 | 0.90 |
DIF_11 | 1.15 d | 1.26 e | 1.14 | 1.25 | 0.91 |
DIF_12 | 0.52 b | 1.01 d | 0.53 | 1.03 | 0.52 |
DIF_13 | 0.56 b | 1.09 d | 0.57 | 1.11 | 0.51 |
DIF_14 | 0.90 cd | 1.25 e | 0.92 | 1.28 | 0.72 |
FEDIAF MRL | ND 4 | ND | 0.50 | 0.40 | 1:1 |
FEDIAFNMaxRL | ND | ND | 2.50 | 1.60 | 2:1 |
Item | NDF 2 | ADF | ADL | HCEL | CEL |
---|---|---|---|---|---|
DIF_1 | 14.03 b | 9.86 a | 2.26 b | 4.17 c | 7.60 b |
DIF_2 | 9.57 e | 6.00 c | 2.50 b | 3.57 c | 3.49 f |
DIF_3 | 24.77 a | 10.53 a | 4.62 a | 14.24 a | 5.92 d |
DIF_4 | 13.71 bc | 8.58 b | 1.02 c | 5.13 c | 7.56 b |
DIF_5 | 6.72 f | 6.60 c | 1.66 b | 0.12 e | 4.95 e |
DIF_6 | 7.41 f | 6.03 c | 1.24 c | 1.38 d | 4.80 e |
DIF_7 | 12.19 c | 9.11 a | 2.11 b | 3.08 c | 7.00 b |
DIF_8 | 20.70 a | 12.27 a | 2.74 b | 8.43 b | 9.54 a |
DIF_9 | 16.34 b | 11.83 a | 1.63 b | 4.51 c | 10.20 a |
DIF_10 | 10.79 d | 8.58 b | 1.91 b | 2.22 d | 6.66 bc |
DIF_11 | 11.12 d | 7.71 b | 1.50 c | 3.41 c | 6.21 c |
DIF_12 | 11.57 d | 7.75 b | 2.16 b | 3.82 c | 5.59 d |
DIF_13 | 12.04 c | 8.83 b | 1.52 b | 3.21 cd | 7.31 b |
DIF_14 | 10.75 d | 6.52 c | 1.50 b | 4.22 c | 5.02 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacuńska, W.; Biel, W.; Zych, K. Evaluation of the Nutritional Value of Insect-Based Complete Pet Foods. Appl. Sci. 2024, 14, 10258. https://doi.org/10.3390/app142210258
Jacuńska W, Biel W, Zych K. Evaluation of the Nutritional Value of Insect-Based Complete Pet Foods. Applied Sciences. 2024; 14(22):10258. https://doi.org/10.3390/app142210258
Chicago/Turabian StyleJacuńska, Weronika, Wioletta Biel, and Krzysztof Zych. 2024. "Evaluation of the Nutritional Value of Insect-Based Complete Pet Foods" Applied Sciences 14, no. 22: 10258. https://doi.org/10.3390/app142210258
APA StyleJacuńska, W., Biel, W., & Zych, K. (2024). Evaluation of the Nutritional Value of Insect-Based Complete Pet Foods. Applied Sciences, 14(22), 10258. https://doi.org/10.3390/app142210258