Machine Learning Models Based on [18F]FDG PET Radiomics for Bone Marrow Assessment in Non-Hodgkin Lymphoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone Marrow Segmentation
2.1.1. Subjects
2.1.2. Pre-Processing
2.1.3. Datasets
2.1.4. Model Architecture and Assessment
2.2. Quantitative Bone Marrow Assessment
2.2.1. Subjects
2.2.2. Labelling
- If there is only an assessment using PET imaging, the pGT is defined as the PET label decided by experts in nuclear medicine.
- If both MFC and PET bone marrow assessments have the same class, the pGT is defined as this coincident class.
- If the assessment by MFC is BMI+ or rBM, the pGT is the same class as the MFC, independently of the PET assessment, due to the MFC technique’s high sensitivity.
- If the assessment by MFC is BMI− but the PET indicates a BMI+, the pGT is defined as BMI+ since the sample taken for the biopsy could be not representative due to its small size.
- If the assessment by MFC is BMI− and the PET indicates rBM, the pGT is defined as BMI− since rBM identification by visual assessment of the PET image is considered tough.
PET | ||||
---|---|---|---|---|
BMI− | BMI+ | rBM | ||
MFC | BMI− | BMI− | BMI+ | BMI− |
BMI+ | BMI+ | BMI+ | BMI+ | |
rBM | rBM | rBM | rBM | |
X | BMI− | BMI+ | rBM |
2.2.3. Radiomics Features Extraction
2.2.4. Databases Creations
2.2.5. Machine Learning Models
3. Results
3.1. Bone Marrow Segmentation
3.2. Quantitative Bone Marrow Assessment
3.2.1. Subjects
3.2.2. Machine Learning Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shankland, K.R.; Armitage, J.O.; Hancock, B.W. Non-Hodgkin Lymphoma. Lancet 2012, 380, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Martelli, M.; Ferreri, A.J.M.; Agostinelli, C.; Di Rocco, A.; Pfreundschuh, M.; Pileri, S.A. Diffuse Large B-Cell Lymphoma. Crit. Rev. Oncol. Hematol. 2013, 87, 146–171. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-M.; Chen, F.-Y.; Jiang, X.-X.; Gu, H.-Y.; Yin, Y.; Xu, J.-R. 18F-FDG PET, Combined FDG-PET/CT and MRI for Evaluation of Bone Marrow Infiltration in Staging of Lymphoma: A Systematic Review and Meta-Analysis. Eur. J. Radiol. 2012, 81, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Çetin, G.; Çıkrıkçıoğlu, M.A.; Özkan, T.; Karatoprak, C.; Ar, M.C.; Eşkazan, A.E.; Ayer, M.; Cerit, A.; Gözübenli, K.; Börkü Uysal, B.; et al. Can Positron Emission Tomography and Computed Tomography Be a Substitute for Bone Marrow Biopsy in Detection of Bone Marrow Involvement in Patients with Hodgkin’s or Non-Hodgkin’s Lymphoma? Turk. J. Hematol. 2015, 32, 213–219. [Google Scholar] [CrossRef]
- Doma, A.; Zevnik, K.; Studen, A.; Prevodnik, V.K.; Gasljevic, G.; Novakovic, B.J. Detection Performance and Prognostic Value of Initial Bone Marrow Involvement in Diffuse Large B-Cell Lymphoma: A Single Centre 18 F-FDG PET/CT and Bone Marrow Biopsy Evaluation Study. Radiol. Oncol. 2024, 58, 15–22. [Google Scholar] [CrossRef]
- Alyamany, R.; El Fakih, R.; Alnughmush, A.; Albabtain, A.; Kharfan-Dabaja, M.A.; Aljurf, M. A Comprehensive Review of the Role of Bone Marrow Biopsy and PET-CT in the Evaluation of Bone Marrow Involvement in Adults Newly Diagnosed with DLBCL. Front. Oncol. 2024, 14, 1301979. [Google Scholar] [CrossRef]
- Asenbaum, U.; Nolz, R.; Karanikas, G.; Furtner, J.; Woitek, R.; Simonitsch-Klupp, I.; Raderer, M.; Mayerhoefer, M.E. Bone Marrow Involvement in Malignant Lymphoma. Acad. Radiol. 2018, 25, 453–460. [Google Scholar] [CrossRef]
- Pakos, E.E.; Fotopoulos, A.D.; Ioannidis, J.P.A. 18F-FDG PET for Evaluation of Bone Marrow Infiltration in Staging of Lymphoma: A Meta-Analysis. J. Nucl. Med. 2005, 46, 958–963. [Google Scholar]
- El-Najjar, I.; Montoto, S.; McDowell, A.; Matthews, J.; Gribben, J.; Szyszko, T.A. The Value of Semiquantitative Analysis in Identifying Diffuse Bone Marrow Involvement in Follicular Lymphoma. Nucl. Med. Commun. 2014, 35, 311–315. [Google Scholar] [CrossRef]
- Chen, Y.-K.; Yeh, C.-L.; Tsui, C.-C.; Liang, J.-A.; Chen, J.-H.; Kao, C.-H. F-18 FDG PET for Evaluation of Bone Marrow Involvement in Non-Hodgkin Lymphoma. Clin. Nucl. Med. 2011, 36, 553–559. [Google Scholar] [CrossRef]
- Almaimani, J.; Tsoumpas, C.; Feltbower, R.; Polycarpou, I. FDG PET/CT versus Bone Marrow Biopsy for Diagnosis of Bone Marrow Involvement in Non-Hodgkin Lymphoma: A Systematic Review. Appl. Sci. 2022, 12, 540. [Google Scholar] [CrossRef]
- Milara, E.; Gómez-Grande, A.; Tomás-Soler, S.; Seiffert, A.P.; Alonso, R.; Gómez, E.J.; Martínez-López, J.; Sánchez-González, P. Bone Marrow Segmentation and Radiomics Analysis of [18F]FDG PET/CT Images for Measurable Residual Disease Assessment in Multiple Myeloma. Comput. Methods Programs Biomed. 2022, 225, 107083. [Google Scholar] [CrossRef] [PubMed]
- Milara, E.; Alonso, R.; Masseing, L.; Seiffert, A.P.; Gómez-Grande, A.; Gómez, E.J.; Martínez-López, J.; Sánchez-González, P. Radiomics Analysis of Bone Marrow Biopsy Locations in [18F]FDG PET/CT Images for Measurable Residual Disease Assessment in Multiple Myeloma. Phys. Eng. Sci. Med. 2023, 46, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Mesguich, C.; Hindie, E.; De Senneville, B.D.; Tlili, G.; Pinaquy, J.B.; Marit, G.; Saut, O. Improved 18-FDG PET/CT Diagnosis of Multiple Myeloma Diffuse Disease by Radiomics Analysis. Nucl. Med. Commun. 2021, 42, 1135–1143. [Google Scholar] [CrossRef]
- Jamet, B.; Morvan, L.; Nanni, C.; Michaud, A.-V.; Bailly, C.; Chauvie, S.; Moreau, P.; Touzeau, C.; Zamagni, E.; Bodet-Milin, C.; et al. Random Survival Forest to Predict Transplant-Eligible Newly Diagnosed Multiple Myeloma Outcome Including FDG-PET Radiomics: A Combined Analysis of Two Independent Prospective European Trials. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1005–1015. [Google Scholar] [CrossRef]
- Leithner, D.; Flynn, J.R.; Devlin, S.M.; Mauguen, A.; Fei, T.; Zeng, S.; Zheng, J.; Imber, B.S.; Hubbeling, H.; Mayerhoefer, M.E.; et al. Conventional and Novel [18F]FDG PET/CT Features as Predictors of CAR-T Cell Therapy Outcome in Large B-Cell Lymphoma. J. Hematol. Oncol. 2024, 17, 21. [Google Scholar] [CrossRef]
- Chen, M.; Rong, J.; Zhao, J.; Teng, Y.; Jiang, C.; Chen, J.; Xu, J. PET-Based Radiomic Feature Based on the Cross-Combination Method for Predicting the Mid-Term Efficacy and Prognosis in High-Risk Diffuse Large B-Cell Lymphoma Patients. Front. Oncol. 2024, 14, 1394450. [Google Scholar] [CrossRef]
- Matutes, E.; Bain, B.J.; Wotherspoon, A. Lymphoid Malignancies: An Atlas of Investigation and Diagnosis, 1st ed.; Evidence-Based Networks Ltd.: Oxford, UK, 2007. [Google Scholar]
- Hollinger, E.F.; Alibazoglu, H.; Ali, A.; Green, A.; Lamonica, G. Hematopoietic Cytokine-Mediated FDG Uptake Simulates the Appearance of Diffuse Metastatic Disease on Whole-Body PET Imaging. Clin. Nucl. Med. 1998, 23, 93–98. [Google Scholar] [CrossRef]
- Rosenbaum, S.J.; Lind, T.; Antoch, G.; Bockisch, A. False-Positive FDG PET Uptake—The Role of PET/CT. Eur. Radiol. 2006, 16, 1054–1065. [Google Scholar] [CrossRef]
- Salaun, P.Y.; Gastinne, T.; Bodet-Milin, C.; Campion, L.; Cambefort, P.; Moreau, A.; Le Gouill, S.; Berthou, C.; Moreau, P.; Kraeber-Bodéré, F. Analysis of 18F-FDG PET Diffuse Bone Marrow Uptake and Splenic Uptake in Staging of Hodgkin’s Lymphoma: A Reflection of Disease Infiltration or Just Inflammation? Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1813–1821. [Google Scholar] [CrossRef]
- Milara, E.; Gómez-Grande, A.; Sarandeses, P.; Seiffert, A.P.; Gómez, E.J.; Sánchez-González, P. Automatic Skeleton Segmentation in CT Images Based on U-Net. J. Imaging Inform. Med. 2024, 37, 2390–2400. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM Procedure Guidelines for Tumour Imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Nguyen, C.; Havlicek, J.; Duong, Q.; Vesely, S.; Gress, R.; Lindenberg, L.; Choyke, P.; Chakrabarty, J.H.; Williams, K. An Automatic 3D CT/PET Segmentation Framework for Bone Marrow Proliferation Assessment. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- Chen, C.; Jin, D.; Zhang, X.; Levy, S.M.; Saha, P.K. Segmentation of Trabecular Bone for In Vivo CT Imaging Using a Novel Approach of Computing Spatial Variation in Bone and Marrow Intensities. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–15. ISBN 0302-9743. [Google Scholar]
- Fiandra, C.; Rosati, S.; Arcadipane, F.; Dinapoli, N.; Fato, M.; Franco, P.; Gallio, E.; Scaffidi Gennarino, D.; Silvetti, P.; Zara, S.; et al. Active Bone Marrow Segmentation Based on Computed Tomography Imaging in Anal Cancer Patients: A Machine-Learning-Based Proof of Concept. Phys. Medica 2023, 113, 102657. [Google Scholar] [CrossRef]
- Klein, A.; Warszawski, J.; Hillengaß, J.; Maier-Hein, K.H. Automatic Bone Segmentation in Whole-Body CT Images. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 21–29. [Google Scholar] [CrossRef]
- Noguchi, S.; Nishio, M.; Yakami, M.; Nakagomi, K.; Togashi, K. Bone Segmentation on Whole-Body CT Using Convolutional Neural Network with Novel Data Augmentation Techniques. Comput. Biol. Med. 2020, 121, 103767. [Google Scholar] [CrossRef]
PET Assessment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
NHL | FL | DLBCL | ||||||||
Class | BMI− | BMI+ | rBM | BMI− | BMI+ | rBM | BMI− | BMI+ | rBM | |
MFC assessment | BMI− | 110 | 16 | 7 | 58 | 12 | 2 | 51 | 4 | 5 |
BMI+ | 30 | 31 | 6 | 23 | 25 | 6 | 6 | 6 | 0 | |
rBM | 24 | 5 | 5 | 11 | 2 | 0 | 11 | 3 | 5 | |
X | 29 | 8 | 2 | 10 | 4 | 0 | 19 | 4 | 2 |
MFC | pGT | |||||
---|---|---|---|---|---|---|
NHL | FL | DLBCL | NHL | FL | DLBCL | |
F1_0 | 0.741 | 0.806 | 0.797 | 0.783 | 0.763 | 0.722 |
F1_1 | 0.521 | 0.463 | 0.480 | 0.696 | 0.705 | 0.815 |
F1_2 | 0.192 | 0.000 | 0.345 | 0.192 | 0.000 | 0.610 |
F1_m | 0.485 | 0.423 | 0.541 | 0.557 | 0.489 | 0.619 |
F1_m * | 0.623 | 0.597 | 0.656 | 0.687 | 0.654 | 0.716 |
F1_w | 0.598 | 0.597 | 0.661 | 0.666 | 0.664 | 0.699 |
F1_macro * | NHL | FL | DLBCL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ORIG | RED | OS | OS_R | ORIG | RED | OS | OS_R | ORIG | RED | OS | OS_R | ||
PET | F1_0 | 0.900 | 0.852 | 0.918 | 0.873 | 0.903 | 1.000 | 0.815 | 0.897 | 0.897 | 0.897 | 0.857 | 0.929 |
F1_1 | 0.778 | 0.842 | 0.824 | 0.700 | 0.727 | 0.923 | 0.667 | 0.727 | 0.500 | 0.500 | 0.500 | 0.500 | |
F1_2 | 0.500 | 0.222 | 0.500 | 0.571 | 0.000 | 0.000 | 1.000 | 0.500 | 0.667 | 0.667 | 0.500 | 0.500 | |
F1_m | 0.726 | 0.639 | 0.747 | 0.715 | 0.543 | 0.641 | 0.827 | 0.708 | 0.688 | 0.688 | 0.619 | 0.643 | |
F1_m * | 0.803 | 0.748 | 0.822 | 0.792 | 0.710 | 0.812 | 0.836 | 0.797 | 0.757 | 0.757 | 0.706 | 0.759 | |
F1_w | 0.818 | 0.792 | 0.843 | 0.803 | 0.815 | 0.962 | 0.768 | 0.835 | 0.741 | 0.741 | 0.690 | 0.807 | |
MFC | F1_0 | 0.727 | 0.744 | 0.500 | 0.421 | 0.727 | 0.455 | 0.750 | 0.842 | ||||
F1_1 | 0.444 | 0.167 | 0.421 | 0.471 | 0.625 | 0.353 | 0.667 | 0.667 | |||||
F1_2 | 0.500 | 0.667 | 0.667 | 0.333 | 0.000 | 0.667 | 0.444 | 0.333 | |||||
F1_m | 0.557 | 0.526 | 0.529 | 0.408 | 0.451 | 0.492 | 0.620 | 0.614 | |||||
F1_m * | 0.659 | 0.652 | 0.605 | 0.546 | 0.620 | 0.569 | 0.705 | 0.715 | |||||
F1_w | 0.644 | 0.637 | 0.532 | 0.517 | 0.683 | 0.476 | 0.699 | 0.724 | |||||
pGT | F1_0 | 0.682 | 0.682 | 0.846 | 0.698 | 0.667 | 0.696 | 0.727 | 0.737 | 0.833 | 0.727 | 0.727 | 0.700 |
F1_1 | 0.615 | 0.615 | 0.720 | 0.710 | 0.667 | 0.632 | 0.696 | 0.720 | 0.500 | 0.500 | 0.500 | 0.500 | |
F1_2 | 0.333 | 0.333 | 0.000 | 0.000 | 0.333 | 0.333 | 0.000 | 0.500 | 0.667 | 0.500 | 0.500 | 0.600 | |
F1_m | 0.543 | 0.543 | 0.522 | 0.469 | 0.556 | 0.554 | 0.474 | 0.652 | 0.667 | 0.576 | 0.576 | 0.600 | |
F1_m * | 0.662 | 0.662 | 0.686 | 0.632 | 0.673 | 0.674 | 0.641 | 0.740 | 0.744 | 0.668 | 0.668 | 0.690 | |
F1_w | 0.672 | 0.672 | 0.754 | 0.682 | 0.694 | 0.696 | 0.707 | 0.745 | 0.732 | 0.643 | 0.643 | 0.666 |
F1_weighted | NHL | FL | DLBCL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ORIG | RED | OS | OS_R | ORIG | RED | OS | OS_R | ORIG | RED | OS | OS_R | ||
PET | F1_0 | 0.918 | 0.852 | 0.918 | 0.873 | 0.903 | 1.000 | 0.933 | 0.968 | 0.897 | 0.889 | 0.897 | 0.929 |
F1_1 | 0.800 | 0.842 | 0.824 | 0.700 | 0.727 | 0.923 | 0.667 | 0.833 | 0.500 | 0.500 | 0.400 | 0.500 | |
F1_2 | 0.333 | 0.222 | 0.500 | 0.571 | 0.000 | 0.000 | 0.000 | 0.000 | 0.667 | 0.400 | 0.000 | 0.500 | |
F1_m | 0.684 | 0.639 | 0.747 | 0.715 | 0.543 | 0.641 | 0.533 | 0.600 | 0.688 | 0.596 | 0.432 | 0.643 | |
F1_m * | 0.786 | 0.748 | 0.822 | 0.792 | 0.710 | 0.812 | 0.714 | 0.774 | 0.757 | 0.716 | 0.619 | 0.759 | |
F1_w | 0.834 | 0.792 | 0.843 | 0.803 | 0.815 | 0.962 | 0.842 | 0.909 | 0.741 | 0.754 | 0.691 | 0.807 | |
MFC | F1_0 | 0.722 | 0.743 | 0.720 | 0.500 | 0.727 | 0.545 | 0.889 | 0.842 | ||||
F1_1 | 0.593 | 0.538 | 0.533 | 0.375 | 0.625 | 0.444 | 0.000 | 0.400 | |||||
F1_2 | 0.000 | 0.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.500 | 0.500 | |||||
F1_m | 0.438 | 0.427 | 0.418 | 0.403 | 0.451 | 0.330 | 0.463 | 0.581 | |||||
F1_m * | 0.609 | 0.601 | 0.589 | 0.543 | 0.620 | 0.504 | 0.652 | 0.700 | |||||
F1_w | 0.663 | 0.667 | 0.631 | 0.521 | 0.683 | 0.515 | 0.748 | 0.728 | |||||
pGT | F1_0 | 0.723 | 0.698 | 0.846 | 0.698 | 0.727 | 0.750 | 0.727 | 0.737 | 0.833 | 0.667 | 0.783 | 0.700 |
F1_1 | 0.690 | 0.727 | 0.720 | 0.710 | 0.750 | 0.667 | 0.696 | 0.720 | 0.500 | 0.571 | 0.500 | 0.500 | |
F1_2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 | 0.667 | 0.444 | 0.286 | 0.600 | |
F1_m | 0.471 | 0.475 | 0.522 | 0.469 | 0.492 | 0.472 | 0.474 | 0.652 | 0.667 | 0.561 | 0.523 | 0.600 | |
F1_m * | 0.632 | 0.639 | 0.686 | 0.632 | 0.659 | 0.640 | 0.641 | 0.740 | 0.744 | 0.666 | 0.644 | 0.690 | |
F1_w | 0.679 | 0.686 | 0.754 | 0.682 | 0.727 | 0.706 | 0.707 | 0.745 | 0.732 | 0.657 | 0.654 | 0.666 |
PET | MFC | pGT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1_m * | F1_w | F1_m * | F1_w | F1_m * | F1_w | ||||||||
Md | BW | Md | BW | Md | BW | Md | BW | Md | BW | Md | BW | ||
NHL | ORIG | LR | 0 | LR | 0 | NB | 3 | MLP2 | 2 | MLP1 | 1 | GB | 2 |
RED | LR | 2 | LR | 2 | MLP2 | 3 | GB | 1 | |||||
OS | GB | 1 | GB | 1 | SIG | 3 | LR | 0 | LIN | 0 | LIN | 0 | |
OS_R | MLP1 | 2 | MLP1 | 2 | GB | 0 | GB | 0 | |||||
FL | ORIG | RF, LR | 2,3 | RF, LR | 2,3 | MLP1 | 3 | MLP2 | 0 | DT | 0 | MLP2 | 1 |
RED | RF | 0 | RF | 0 | RF | 3 | DT | 3 | LR | 2 | RF | 1 | |
OS | RF | 1 | DT | 3 | MLP1 | 2 | MLP1 | 2 | MLP1 | 3 | MLP1 | 3 | |
OS_R | RF | 2 | RF | 1 | RF | 3 | LR | 3 | RF | 2 | RF | 2 | |
DLBCL | ORIG | GB | 3 | GB | 3 | LR | 1,2,3 | MLP1 | 1 | RF | 0 | RF | 0 |
RED | GB, MLP2 | 1,3 | MLP1 | 3 | LR, KNN | 3 | RBF | 3 | |||||
OS | MLP1 | 2 | GB | 1 | RF | 0,2 | DT | 1 | DT | 2 | GB | 3 | |
OS_R | MLP1 | 3 | MLP1 | 3 | RF | 3 | RF | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milara, E.; Sarandeses, P.; Jiménez-Ubieto, A.; Saviatto, A.; Seiffert, A.P.; Gárate, F.J.; Moreno-Blanco, D.; Poza, M.; Gómez, E.J.; Gómez-Grande, A.; et al. Machine Learning Models Based on [18F]FDG PET Radiomics for Bone Marrow Assessment in Non-Hodgkin Lymphoma. Appl. Sci. 2024, 14, 10291. https://doi.org/10.3390/app142210291
Milara E, Sarandeses P, Jiménez-Ubieto A, Saviatto A, Seiffert AP, Gárate FJ, Moreno-Blanco D, Poza M, Gómez EJ, Gómez-Grande A, et al. Machine Learning Models Based on [18F]FDG PET Radiomics for Bone Marrow Assessment in Non-Hodgkin Lymphoma. Applied Sciences. 2024; 14(22):10291. https://doi.org/10.3390/app142210291
Chicago/Turabian StyleMilara, Eva, Pilar Sarandeses, Ana Jiménez-Ubieto, Adriana Saviatto, Alexander P. Seiffert, F. J. Gárate, D. Moreno-Blanco, M. Poza, Enrique J. Gómez, Adolfo Gómez-Grande, and et al. 2024. "Machine Learning Models Based on [18F]FDG PET Radiomics for Bone Marrow Assessment in Non-Hodgkin Lymphoma" Applied Sciences 14, no. 22: 10291. https://doi.org/10.3390/app142210291
APA StyleMilara, E., Sarandeses, P., Jiménez-Ubieto, A., Saviatto, A., Seiffert, A. P., Gárate, F. J., Moreno-Blanco, D., Poza, M., Gómez, E. J., Gómez-Grande, A., & Sánchez-González, P. (2024). Machine Learning Models Based on [18F]FDG PET Radiomics for Bone Marrow Assessment in Non-Hodgkin Lymphoma. Applied Sciences, 14(22), 10291. https://doi.org/10.3390/app142210291