Enhancing Skin Lesion Classification Performance with the ABC Ensemble Model
Abstract
:1. Introduction
- We propose a novel ABC ensemble model for skin lesion classification by leveraging the ABCD rule, which reflects the clinical criteria used to assess lesions. The model consists of five distinct blocks, including two generalization blocks that learn overall image characteristics and three ABC-related blocks that focus on the asymmetry, border, and color features of skin lesions. Each block undergoes different preprocessing methods before passing through five classifiers: ViT-B/16, DenseNet121, EfficientNet-B0, MobileNetV2, and ResNet50.
- To demonstrate the effectiveness of our model, we conduct experiments using 15 different model configurations. These configurations include models without preprocessing, models with various preprocessing methods, and ensemble models with and without weights. The results consistently show that the ABC ensemble model outperforms the other configurations in terms of accuracy, recall, precision, and F1-score, highlighting its superior performance in skin lesion classification.
- Our model adopts a weighted soft voting approach, where higher weights are assigned to the generalization blocks that analyze overall image features. By doubling the weight assigned to the generalization blocks, we achieve improved classification performance. We experiment with various weight combinations to determine the optimal setup, showing that this weighted voting method enhances the overall accuracy and reliability of the model.
- To further validate the effectiveness of our model, we perform Grad-CAM analysis, which allows us to visualize the regions of the skin lesion that each block focuses on during classification. The different preprocessing methods in our model highlight both general features and specific lesion characteristics such as asymmetry, border, and color. This analysis shows the interpretability and reliability of the model, ensuring that it is not only effective but also transparent in its decision-making process.
2. Related Work
3. Materials and Methods
3.1. Dataset
- Akiec: Actinic Keratoses and Intraepithelial Carcinoma can be considered precursor cancer types of non-melanoma skin cancer, rather than actual cancer species [35].
- Bcc: Basal cell carcinoma is the most common form of skin cancer, which grows slowly and rarely spreads [36].
- Bkl: Benign keratosis is a variant of seborrheic keratosis, and it is difficult to classify because there are many biologically similar lesions and many lesions with similar morphological characteristics [37].
- Df: Dermatofibroma is a benign skin lesion considered an inflammatory response [38].
- Mel: Melanoma is a malignant tumor derived from melanocytes and can be cured with simple resection if found early [39].
- Nv: Melanocytic nevi exhibit many changes in the benign forms of melanocytes [40].
- Vasc: Vascular skin lesions include cherry hemangiomas, angiokeratomas, and pyogenic granulomas [41].
3.2. Overall Model Architecture
3.3. Data Preprocessing
3.4. Five Blocks of ABC Ensemble Model
3.5. Ensemble Classifier
3.6. Experiments
- GoogLeNet without preprocessing;
- AlexNet without preprocessing;
- ViT-B/16 without preprocessing;
- DenseNet121 without preprocessing;
- EfficientNet-B0 without preprocessing;
- MobileNetV2 without preprocessing;
- ResNet50 without preprocessing;
- ViT-B/16 with preprocessing (ROI extraction);
- DenseNet121 with preprocessing (ROI extraction, Upsampling);
- EfficientNet-B0 with preprocessing (ROI extraction, Segmentation);
- MobileNetV2 with preprocessing (ROI extraction, Morphological Transformation);
- ResNet50 with preprocessing (ROI extraction, Adjust Hue);
- Ensemble without ABCD;
- Ensemble with weights and without ABCD;
- Ensemble with weights and with ABCD (Ours).
4. Results
4.1. Overall Classification Performance
4.2. Category-Wise Classification Performance
4.3. Grad-CAM Analysis
4.4. Weighted Optimization
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.; Chen, Y.P.P. Image based computer aided diagnosis system for cancer detection. Expert Syst. Appl. 2015, 42, 5356–5365. [Google Scholar] [CrossRef]
- Feller, L.; Khammissa, R.; Kramer, B.; Altini, M.; Lemmer, J. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face. Head Face Med. 2016, 12, 11. [Google Scholar] [CrossRef]
- Basak, H.; Kundu, R.; Sarkar, R. MFSNet: A multi focus segmentation network for skin lesion segmentation. Pattern Recognit. 2022, 128, 108673. [Google Scholar] [CrossRef]
- Haggenmüller, S.; Maron, R.C.; Hekler, A.; Utikal, J.S.; Barata, C.; Barnhill, R.L.; Beltraminelli, H.; Berking, C.; Betz-Stablein, B.; Blum, A.; et al. Skin cancer classification via convolutional neural networks: Systematic review of studies involving human experts. Eur. J. Cancer 2021, 156, 202–216. [Google Scholar] [CrossRef]
- Gajera, H.K.; Nayak, D.R.; Zaveri, M.A. M2CE: Multi-convolutional neural network ensemble approach for improved multiclass classification of skin lesion. Expert Syst. 2023, 40, e13435. [Google Scholar] [CrossRef]
- Zhao, Z. Skin cancer classification based on convolutional neural networks and vision transformers. J. Phys. Conf. Ser. 2022, 2405, 012037. [Google Scholar] [CrossRef]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef]
- White, R.; Rigel, D.S.; Friedman, R.J. Computer applications in the diagnosis and prognosis of malignant melanoma. Dermatol. Clin. 1991, 9, 695–702. [Google Scholar] [CrossRef]
- Blum, A.; Luedtke, H.; Ellwanger, U.; Schwabe, R.; Rassner, G.; Garbe, C. Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br. J. Dermatol. 2004, 151, 1029–1038. [Google Scholar] [CrossRef]
- Ballerini, L.; Fisher, R.B.; Aldridge, B.; Rees, J. A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In Color Medical Image Analysis; Springer: Dordrecht, The Netherlands, 2013; pp. 63–86. [Google Scholar]
- Celebi, M.E.; Kingravi, H.A.; Uddin, B.; Iyatomi, H.; Aslandogan, Y.A.; Stoecker, W.V.; Moss, R.H. A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 2007, 31, 362–373. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Alwakid, G.; Gouda, W.; Humayun, M.; Sama, N.U. Melanoma detection using deep learning-based classifications. Healthcare 2022, 10, 2481. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Ali, K.; Shaikh, Z.A.; Khan, A.A.; Laghari, A.A. Multiclass skin cancer classification using EfficientNets–a first step towards preventing skin cancer. Neurosci. Inform. 2022, 2, 100034. [Google Scholar] [CrossRef]
- Yin, W.; Huang, J.; Chen, J.; Ji, Y. A study on skin tumor classification based on dense convolutional networks with fused metadata. Front. Oncol. 2022, 12, 989894. [Google Scholar] [CrossRef]
- Wang, H.; Qi, Q.; Sun, W.; Li, X.; Dong, B.; Yao, C. Classification of skin lesions with generative adversarial networks and improved MobileNetV2. Int. J. Imaging Syst. Technol. 2023, 33, 1561–1576. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Song, B.; Kc, D.R.; Yang, R.Y.; Li, S.; Zhang, C.; Liang, R. Classification of Mobile-Based Oral Cancer Images Using the Vision Transformer and the Swin Transformer. Cancers 2024, 16, 987. [Google Scholar] [CrossRef]
- Kwasigroch, A.; Grochowski, M.; Mikołajczyk, A. Neural architecture search for skin lesion classification. IEEE Access 2020, 8, 9061–9071. [Google Scholar] [CrossRef]
- Rahi, M.M.I.; Khan, F.T.; Mahtab, M.T.; Ullah, A.A.; Alam, M.G.R.; Alam, M.A. Detection of skin cancer using deep neural networks. In Proceedings of the 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Melbourne, Australia, 9–11 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Kawahara, J.; BenTaieb, A.; Hamarneh, G. Deep features to classify skin lesions. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1397–1400. [Google Scholar]
- Rahman, A.; Smith, D.V.; Timms, G. Multiple classifier system for automated quality assessment of marine sensor data. In Proceedings of the 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, 2–5 April 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 362–367. [Google Scholar]
- Haralabopoulos, G.; Anagnostopoulos, I.; McAuley, D. Ensemble deep learning for multilabel binary classification of user-generated content. Algorithms 2020, 13, 83. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Zhang, J. Ensemble learning-based CNN for textile fabric defects classification. Int. J. Cloth. Sci. Technol. 2021, 33, 664–678. [Google Scholar] [CrossRef]
- Vennelakanti, A.; Shreya, S.; Rajendran, R.; Sarkar, D.; Muddegowda, D.; Hanagal, P. Traffic sign detection and recognition using a CNN ensemble. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Müller, D.; Soto-Rey, I.; Kramer, F. An analysis on ensemble learning optimized medical image classification with deep convolutional neural networks. IEEE Access 2022, 10, 66467–66480. [Google Scholar] [CrossRef]
- de Jesus Silva, L.F.; Cortes, O.A.C.; Diniz, J.O.B. A novel ensemble CNN model for COVID-19 classification in computerized tomography scans. Results Control Optim. 2023, 11, 100215. [Google Scholar] [CrossRef]
- Charan, D.S.; Nadipineni, H.; Sahayam, S.; Jayaraman, U. Method to classify skin lesions using dermoscopic images. arXiv 2020, arXiv:2008.09418. [Google Scholar]
- Mahbod, A.; Schaefer, G.; Wang, C.; Dorffner, G.; Ecker, R.; Ellinger, I. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput. Methods Programs Biomed. 2020, 193, 105475. [Google Scholar] [CrossRef]
- Lin, T.C.; Lee, H.C. Skin cancer dermoscopy images classification with meta data via deep learning ensemble. In Proceedings of the 2020 International Computer Symposium (ICS), Tainan, Taiwan, 17–19 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 237–241. [Google Scholar]
- Akay, B.; Kocyigit, P.; Heper, A.; Erdem, C. Dermatoscopy of flat pigmented facial lesions: Diagnostic challenge between pigmented actinic keratosis and lentigo maligna. Br. J. Dermatol. 2010, 163, 1212–1217. [Google Scholar] [CrossRef]
- Lallas, A.; Apalla, Z.; Argenziano, G.; Longo, C.; Moscarella, E.; Specchio, F.; Raucci, M.; Zalaudek, I. The dermatoscopic universe of basal cell carcinoma. Dermatol. Pract. Concept. 2014, 4, 11. [Google Scholar] [CrossRef]
- Moscarella, E.; Zalaudek, I.; Pellacani, G.; Eibenschutz, L.; Catricalà, C.; Amantea, A.; Panetta, C.; Argenziano, G. Lichenoid keratosis-like melanomas. J. Am. Acad. Dermatol. 2011, 65, e85–e87. [Google Scholar] [CrossRef]
- Zaballos, P.; Puig, S.; Llambrich, A.; Malvehy, J. Dermoscopy of dermatofibromas: A prospective morphological study of 412 cases. Arch. Dermatol. 2008, 144, 75–83. [Google Scholar] [CrossRef]
- Schiffner, R.; Schiffner-Rohe, J.; Vogt, T.; Landthaler, M.; Wlotzke, U.; Cognetta, A.B.; Stolz, W. Improvement of early recognition of lentigo maligna using dermatoscopy. J. Am. Acad. Dermatol. 2000, 42, 25–32. [Google Scholar] [CrossRef]
- Rosendahl, C.; Cameron, A.; McColl, I.; Wilkinson, D. Dermatoscopy in routine practice: ‘Chaos and clues’. Aust. Fam. Physician 2012, 41, 482–487. [Google Scholar] [PubMed]
- Zaballos, P.; Carulla, M.; Ozdemir, F.; Zalaudek, I.; Bañuls, J.; Llambrich, A.; Puig, S.; Argenziano, G.; Malvehy, J. Dermoscopy of pyogenic granuloma: A morphological study. Br. J. Dermatol. 2010, 163, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.J.; Rigel, D.S.; Kopf, A.W. Early detection of malignant melanoma: The role of physician examination and self-examination of the skin. CA Cancer J. Clin. 1985, 35, 130–151. [Google Scholar] [CrossRef]
- Healthline. What Is the ABCDE Rule for Detecting Skin Cancer? Available online: https://www.healthline.com/health/skin-cancer/abcd-rule-for-skin-cancer (accessed on 6 November 2024).
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Izadpanahkakhk, M.; Razavi, S.M.; Taghipour-Gorjikolaie, M.; Zahiri, S.H.; Uncini, A. Deep region of interest and feature extraction models for palmprint verification using convolutional neural networks transfer learning. Appl. Sci. 2018, 8, 1210. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Srisha, R.; Khan, A. Morphological operations for image processing: Understanding and its applications. NCVSComs-13 2013, 13, 19. [Google Scholar]
- Kang, H.C.; Han, H.N.; Bae, H.C.; Kim, M.G.; Son, J.Y.; Kim, Y.K. HSV color-space-based automated object localization for robot grasping without prior knowledge. Appl. Sci. 2021, 11, 7593. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Diagnostic Category | Number of Images | Percentage |
---|---|---|
akiec | 327 | 3.27% |
bcc | 514 | 5.13% |
bkl | 1099 | 10.97% |
df | 115 | 1.15% |
mel | 113 | 11.11% |
nv | 6705 | 66.95% |
vasc | 142 | 1.42% |
Total | 10,015 | 100% |
Class | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |
akiec | 262 | 65 | 262 | 65 | 261 | 66 | 261 | 66 | 262 | 65 |
bcc | 411 | 103 | 411 | 103 | 411 | 103 | 411 | 103 | 412 | 102 |
bkl | 879 | 220 | 879 | 220 | 879 | 220 | 880 | 219 | 879 | 220 |
df | 92 | 23 | 92 | 23 | 92 | 23 | 92 | 23 | 92 | 23 |
mel | 890 | 223 | 890 | 223 | 891 | 222 | 891 | 222 | 890 | 223 |
nv | 5364 | 1341 | 5364 | 1341 | 5364 | 1341 | 5364 | 1341 | 5364 | 1341 |
vasc | 114 | 28 | 114 | 28 | 114 | 28 | 113 | 29 | 113 | 29 |
sum | 8012 | 2003 | 8012 | 2003 | 8012 | 2003 | 8012 | 2003 | 8012 | 2003 |
Model | Preprocessing Method | Accuracy | Recall | Precision | F1-Score | ||||
---|---|---|---|---|---|---|---|---|---|
ROI. | Ups. | Seg. | Adj. | Mor. | |||||
GoogLeNet | - | - | - | - | - | 0.8816 | 0.8779 | 0.8816 | 0.8762 |
AlexNet | - | - | - | - | - | 0.8458 | 0.8424 | 0.8458 | 0.8412 |
ViT-B/16 | - | - | - | - | - | 0.8937 | 0.8905 | 0.8932 | 0.8900 |
DenseNet121 | - | - | - | - | - | 0.9023 | 0.9001 | 0.9022 | 0.8993 |
EfficientNet-B0 | - | - | - | - | - | 0.9025 | 0.9000 | 0.9024 | 0.8997 |
MobileNetV2 | - | - | - | - | - | 0.8909 | 0.8878 | 0.8909 | 0.8880 |
ResNet50 | - | - | - | - | - | 0.8883 | 0.8854 | 0.8883 | 0.8852 |
ViT-B/16 | ✔ | - | - | - | - | 0.9090 | 0.9059 | 0.9073 | 0.9053 |
DenseNet121 | ✔ | ✔ | - | - | - | 0.8913 | 0.8900 | 0.8913 | 0.8893 |
EfficientNet-B0 | ✔ | - | ✔ | - | - | 0.9073 | 0.9057 | 0.9073 | 0.9051 |
MobileNetV2 | ✔ | - | - | ✔ | - | 0.8999 | 0.8987 | 0.8999 | 0.8982 |
ResNet50 | ✔ | - | - | - | ✔ | 0.8999 | 0.8982 | 0.8999 | 0.8973 |
Ensemble (w/o ABCD) | - | - | - | - | - | 0.9154 | 0.9137 | 0.9154 | 0.9129 |
Ensemble (w/weights, w/o ABCD) | - | - | - | - | - | 0.9232 | 0.9223 | 0.9226 | 0.9196 |
Ensemble (w/weights, w/ABCD, Ours) | ✔ | ✔ | ✔ | ✔ | ✔ | 0.9326 | 0.9316 | 0.9310 | 0.9302 |
Model | Weights | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|
ABC ensemble | [1, 1, 1, 1, 1] | 0.9313 | 0.9304 | 0.9313 | 0.9294 |
ABC ensemble | [2, 1, 1, 1, 1] | 0.9320 | 0.9311 | 0.9320 | 0.9302 |
ABC ensemble | [1, 2, 1, 1, 1] | 0.9315 | 0.9307 | 0.9315 | 0.9297 |
ABC ensemble | [1, 1, 2, 1, 1] | 0.9313 | 0.9307 | 0.9313 | 0.9295 |
ABC ensemble | [1, 1, 1, 2, 1] | 0.9294 | 0.9289 | 0.9294 | 0.9276 |
ABC ensemble | [1, 1, 1, 1, 2] | 0.9303 | 0.9295 | 0.9303 | 0.9284 |
ABC ensemble | [1, 1, 2, 2, 2] | 0.9296 | 0.9289 | 0.9296 | 0.9278 |
ABC ensemble | [2, 2, 1, 1, 1] | 0.9326 | 0.9316 | 0.9326 | 0.9308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-Y.; Song, M.-J.; Shin, Y.-J. Enhancing Skin Lesion Classification Performance with the ABC Ensemble Model. Appl. Sci. 2024, 14, 10294. https://doi.org/10.3390/app142210294
Choi J-Y, Song M-J, Shin Y-J. Enhancing Skin Lesion Classification Performance with the ABC Ensemble Model. Applied Sciences. 2024; 14(22):10294. https://doi.org/10.3390/app142210294
Chicago/Turabian StyleChoi, Jae-Young, Min-Ji Song, and You-Jin Shin. 2024. "Enhancing Skin Lesion Classification Performance with the ABC Ensemble Model" Applied Sciences 14, no. 22: 10294. https://doi.org/10.3390/app142210294
APA StyleChoi, J. -Y., Song, M. -J., & Shin, Y. -J. (2024). Enhancing Skin Lesion Classification Performance with the ABC Ensemble Model. Applied Sciences, 14(22), 10294. https://doi.org/10.3390/app142210294