Influence of the Angle of Periodontal Intrabony Defects on Blood Clots: A Confocal Microscopy Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Collection
2.2. Specimen Preparation
2.3. Confocal Microscopy Evaluation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waerhaug, J. The infrabony pocket and its relationship to trauma from occlusion and subgingival plaque. J. Periodontol. 1979, 50, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Caffesse, R.G.; Sweeney, P.L.; Smith, B.A. Scaling and root planing with and without periodontal flap surgery. J. Clin. Periodontol. 1986, 13, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Suvan, J.; Leira, Y.; Moreno Sancho, F.M.; Graziani, F.; Derks, J.; Tomasi, C. Subgingival instrumentation for treatment of periodontitis. A systematic review. J. Clin. Periodontol. 2020, 47 (Suppl. S22), 155–175. [Google Scholar] [CrossRef] [PubMed]
- Citterio, F.; Gualini, G.; Chang, M.; Piccoli, G.M.; Giraudi, M.; Manavella, V.; Baima, G.; Mariani, G.M.; Romano, F.; Aimetti, M. Pocket closure and residual pockets after non-surgical periodontal therapy: A systematic review and meta-analysis. J. Clin. Periodontol. 2022, 49, 2–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cortellini, P.; Tonetti, M.S. Improved wound stability with a modified minimally invasive surgical technique in the regenerative treatment of isolated interdental intrabony defects. J. Clin. Periodontol. 2009, 36, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Goldman, H.M.; Cohen, D.W. The Infrabony Pocket: Classification and Treatment. J. Periodontol. 1958, 29, 272–291. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Tawfik, O.K.; ElNahass, H. Partial (incomplete) removal of granulation tissue using modified minimally invasive surgical technique in treatment of infrabony defects (randomized control clinical trial). BMC Surg. 2024, 12, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ouyang, X.; Kang, J.; Zhou, S.; Suo, C.; Xu, L.; Liu, J.; Liu, W. Efficacy of periodontal minimally invasive surgery with and without regenerative materials for treatment of intrabony defect: A randomized clinical trial. Clin. Oral Investig. 2022, 26, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Prato, G.P.; Cortellini, P. Periodontal regeneration of human intrabony defects. IV. Determinants of healing response. J. Periodontol. 1993, 64, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Al-Machot, E.; Meyle, J.; Jervøe-Storm, P.M.; Jepsen, S. Three-year results following regenerative periodontal surgery of advanced intrabony defects with enamel matrix derivative alone or combined with a synthetic bone graft. Clin. Oral Investig. 2015, 20, 357–364. [Google Scholar] [CrossRef]
- Manzolli Leite, F.R.; Nascimento, G.G.; Manzolli Leite, E.R.; Leite, A.A.; Cezar Sampaio, J.E. Effect of the association between citric acid and EDTA on root surface etching. J. Contemp. Dent. Pract. 2013, 14, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, J.E.; Campos, F.P.; Pilatti, G.L.; Theodoro, L.H.; Leite, F.R. A scanning electron microscopy study of root surface smear layer removal after topical application of EDTA plus a detergent. J. Appl. Oral Sci. 2005, 13, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, M.; Ceraolo, E.; Mazzitelli, C.; Maravic, T.; Sangiorgi, M.; Zucchelli, G.; Breschi, L.; Mazzoni, A. Blood clot stabilization after different mechanical and chemical root treatments: A morphological evaluation using scanning electron microscopy. J. Periodontal Implant Sci. 2022, 52, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Polson, A.M.; Proye, M.P. Fibrin linkage: A precursor for new attachment. J. Periodontol. 1983, 54, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Nibali, L.; Koidou, V.P.; Nieri, M.; Barbato, L.; Pagliaro, U.; Cairo, F. Regenerative surgery versus access flap for the treatment of intra-bony periodontal defects: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 320–351. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.J.; Rotch, H.A.; Trombelli, L.; Wikesjö, U.M. An in vitro screening model to evaluate root conditioning protocols for periodontal regenerative procedures. J. Periodontol. 2000, 71, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Adriaens, P.A.; Adriaens, L.M. Effects of nonsurgical periodontal therapy on hard and soft tissues. Periodontology 2000 2004, 36, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Leite, F.R.; Sampaio, J.E.; Zandim, D.L.; Dantas, A.A.; Leite, E.R.; Leite, A.A. Influence of root-surface conditioning with acid and chelating agents on clot stabilization. Quintessence Int. 2010, 41, 341–349. [Google Scholar] [PubMed]
- Dantas, A.A.; Fontanari, L.A.; Ede, I.P.; Leite, F.R.; Zandim, D.L.; Rached, R.S.; Sampaio, J.E. Blood cells attachment after root conditioning and PRP application: An in vitro study. J. Contemp. Dent. Pract. 2012, 13, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Amaral, N.G.; Rezende, M.L.; Hirata, F.; Rodrigues, M.G.; Sant’ana, A.C.; Greghi, S.L.; Passanezi, E. Comparison among four commonly used demineralizing agents for root conditioning: A scanning electron microscopy. J. Appl. Oral Sci. 2011, 19, 469–475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Felemban, B.K. Enhancing attachment of human gingival fibroblasts to periodontally compromised teeth: A comparative analysis of hyaluronic acid, EDTA, enamel matrix derivatives. Saudi Dent. J. 2023, 35, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.; P Lang, N.; Cortellini, P. Enamel matrix proteins in the regenerative therapy of deep intrabony defects. J. Clin. Periodontol. 2002, 29, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Tovalino, F.M.; Arocutipa, C.D.; Barja-Ore, J. Efficacy of Enamel Matrix Derivative in Periodontal Regeneration Defects: A Systematic Review and Meta-Analysis. Contemp. Clin. Dent. 2023, 14, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.G.; Leite, A.A.; Leite, E.R.; Sampaio, J.E.; Leite, F.R. Blood clot stabilization on root dentin conditioned by the combination of tetracycline and EDTA. Braz. J. Oral Sci. 2014, 13, 83–88. [Google Scholar] [CrossRef]
- Leite, F.R.; Moreira, C.S.; Theodoro, L.H.; Sampaio, J.E. Blood cell attachment to root surfaces treated with EDTA gel. Braz. Oral Res. 2005, 19, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.Y.; Mailhot, J.M. The effects of EDTA gel conditioning exposure time on periodontitis-affected human root surfaces: Surface topography and PDL cell adhesion. J. Int. Acad. Periodontol. 2003, 5, 11–22. [Google Scholar] [PubMed]
- Porrelli, D.; Bevilacqua, L.; Tacchino, G.; Brugnera, C.; Fanfoni, L.; Turco, G.; Maglione, M. In vitro study on conditioned dental root surfaces: Evaluation of wettability, smear layer, and blood clot adhesion. Quintessence Int. 2021, 9, 624–634. [Google Scholar] [CrossRef] [PubMed]
Angle | H-Concavity (mm) | p Values | S-Retraction (mm2) | p Values | S-Clot (mm2) | p Values | S-Retraction/S-Clot | p Values | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NT | EDTA | NT | EDTA | NT | EDTA | NT | EDTA | |||||
25° | 4.85 ± 0.32 | 5.13 ± 0.15 | 0.14 | 1.12 ± 0.06 | 0.57 ± 0.09 | 0.012 | 6.33 ± 0.29 | 8.14 ± 0.64 | 0.012 | 18 ± 1 | 7 ± 1 | 0.012 |
37° | 4.50 ± 0.26 | 5.13 ± 0.07 | 0.012 | 2.57 ± 0.33 | 1.10 ± 0.13 | 0.012 | 8.04 ± 1.15 | 9.65 ± 0.38 | 0.012 | 32 ± 4 | 11 ± 1 | 0.012 |
50° | 4.52 ± 0.16 | 5.27 ± 0.13 | 0.012 | 5.50 ± 0.51 | 1.21 ± 0.25 | 0.022 | 9.79 ± 0.38 | 14.86 ± 1.71 | 0.012 | 54 ± 6 | 8 ± 2 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bevilacqua, L.; Patatti, S.; Macrì, A.; Del Lupo, V.; Porrelli, D.; Maglione, M. Influence of the Angle of Periodontal Intrabony Defects on Blood Clots: A Confocal Microscopy Study. Appl. Sci. 2024, 14, 10306. https://doi.org/10.3390/app142210306
Bevilacqua L, Patatti S, Macrì A, Del Lupo V, Porrelli D, Maglione M. Influence of the Angle of Periodontal Intrabony Defects on Blood Clots: A Confocal Microscopy Study. Applied Sciences. 2024; 14(22):10306. https://doi.org/10.3390/app142210306
Chicago/Turabian StyleBevilacqua, Lorenzo, Sofia Patatti, Andrea Macrì, Veronica Del Lupo, Davide Porrelli, and Michele Maglione. 2024. "Influence of the Angle of Periodontal Intrabony Defects on Blood Clots: A Confocal Microscopy Study" Applied Sciences 14, no. 22: 10306. https://doi.org/10.3390/app142210306
APA StyleBevilacqua, L., Patatti, S., Macrì, A., Del Lupo, V., Porrelli, D., & Maglione, M. (2024). Influence of the Angle of Periodontal Intrabony Defects on Blood Clots: A Confocal Microscopy Study. Applied Sciences, 14(22), 10306. https://doi.org/10.3390/app142210306