Towards the Valorization of Elderberry By-Product: Recovery and Use of Natural Ingredients for Sorbet Formulations
Abstract
:1. Introduction
- Physicochemical properties: Evaluation of the impact on sorbets’ pH, °Brix, overrun, melting rate, and color.
- Consumers’ acceptance: Assessment of sensory characteristics of sorbets.
- Bioactive content: Analysis of total phenolic content, total monomeric anthocyanins, and in vitro antioxidant potential.
- Prebiotic potential: Evaluation of the ability of the sorbets enriched with pomace to stimulate the growth of probiotic bacteria.
2. Materials and Methods
2.1. Chemicals
2.2. Plant Raw Materials
2.3. Experimental Design
- Sorbet C (control)—obtained using syrup C prepared only with blueberries, without addition of pomace powder or extract;
- Sorbet P—obtained using syrup P (prepared with 5% pomace powder);
- Sorbet E-5—obtained using syrup E-5 (prepared with 5% concentrated extract obtained from 5 g of pomace powder);
- Sorbet E-50—obtained using syrup E-50 (prepared with 5% concentrated extract obtained from 50 g of pomace powder).
2.4. Preparation of Elderberry Pomace Extracts
2.5. Analysis of Pomace Polyphenols Using Ultra-High-Performance Liquid Chromatography with Photodiode Array Detector and Mass Spectrometry (UHPLC-DAD-ESI-MSn)
2.6. Preparation of Blueberry Syrup Enriched with Elderberry Pomace Powder or Extract
2.7. Preparation of Sorbet
2.8. Quality Evaluation of Sorbets
2.8.1. pH of Sorbet
2.8.2. °Brix of Sorbet
2.8.3. Overrun
2.8.4. Melting Rate
2.8.5. Color Analysis
2.8.6. Consumer Evaluation of Sorbets
2.9. Preparation of Extracts from Sorbets for Phenolics and Antioxidant Activity Analysis
2.10. Determination of Total Phenolic Content (TPC)
2.11. Determination of Total Monomeric Anthocyanins (TMAs)
2.12. Determination of Antioxidant Activity
2.13. Sources and Cultivation of Probiotic Cultures
2.14. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Elderberry Pomace
3.2. Evaluation of Physicochemical Parameters of Sorbets
3.3. Consumer Assessments of Sorbets
3.4. Antioxidant Potential of Sorbets
3.5. Evaluation of the In Vitro Prebiotic Effect of Blueberry Sorbet
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petkova, T.; Doykina, P.; Alexieva, I.; Mihaylova, D.; Popova, A. Characterization of Fruit Sorbet Matrices with Added Value from Zizyphus jujuba and Stevia rebaudiana. Foods 2022, 11, 2748. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Usmani, Z.; Gupta, V.K.; Bhat, R. Valorization of Fruits and Vegetable Wastes and By-Products to Produce Natural Pigments. Crit. Rev. Biotechnol. 2021, 41, 535–563. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-Industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Çam, M.; Erdoǧan, F.; Aslan, D.; Dinç, M. Enrichment of Functional Properties of Ice Cream with Pomegranate By-Products. J. Food Sci. 2013, 78, C1543–C1550. [Google Scholar] [CrossRef]
- Salem, S.A.; Ashoush, I.S.; Al-Hassan, A.A. Enrichment of Functional Properties of Ice Cream with Red Grape Pomace Extract. Egypt. J. Food Sci. 2014, 45, 45–54. [Google Scholar]
- Vital, A.C.P.; Santos, N.W.; Matumoto-Pintro, P.T.; da Silva Scapim, M.R.; Madrona, G.S. Ice Cream Supplemented with Grape Juice Residue as a Source of Antioxidants. Int. J. Dairy. Technol. 2018, 71, 183–189. [Google Scholar] [CrossRef]
- Böger, B.; Andréa, L.B.; Lucchetta, L.; Ellen, P.P. Use of Jabuticaba (Plinia cauliflora) Skin in the Processing of Ice Creams. Rev. Chil. Nutr. 2019, 46, 154–159. [Google Scholar] [CrossRef]
- Neves, C.M.B.; Fogeiro, É.; Ferreira, A.; Pereira, F.; Wessel, D.F. Byproducts of the Berry Juice Industry: Phytochemical Recovery and Valuable Applications. In Food Byproducts Management and Their Utilization; Gómez-García, R., Vilas-Boas, A.A., Campos, D.A., Pintado, M.M., Aguilar, C.N., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 53–89. ISBN 9781003377801. [Google Scholar]
- Pal, P.; Singh, A.K.; Srivastava, R.K.; Rathore, S.S.; Sahoo, U.K.; Subudhi, S.; Sarangi, P.K.; Prus, P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024, 13, 3007. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef]
- Schmitzer, V.; Veberic, R.; Stampar, F. European Elderberry (Sambucus nigra L.) and American Elderberry (Sambucus canadensis L.): Botanical, Chemical and Health Properties of Flowers, Berries and Their Products. In Berries: Properties, Consumption and Nutrition; Tuberoso, C., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2012; ISBN 9781614702573. [Google Scholar]
- Pascariu, O.-E.; Israel-Roming, F. Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes 2022, 10, 2288. [Google Scholar] [CrossRef]
- Liu, D.; He, X.-Q.; Wu, D.-T.; Li, H.-B.; Feng, Y.-B.; Zou, L.; Gan, R.-Y. Elderberry (Sambucus nigra L.): Bioactive Compounds, Health Functions, and Applications. J. Agric. Food Chem. 2022, 70, 4202–4220. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Gramza-Michałowska, A. Advanced Research on the Antioxidant and Health Benefit of Elderberry (Sambucus nigra) in Food—A Review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Martins-Gomes, C.; Nunes, F.M.; Silva, A.M. Elderberry (Sambucus nigra L.) Extracts Promote Anti-Inflammatory and Cellular Antioxidant Activity. Food Chem. X 2022, 15, 100437. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.M.B.; Pinto, A.; Gonçalves, F.; Wessel, D.F. Changes in Elderberry (Sambucus nigra L.) Juice Concentrate Polyphenols during Storage. Appl. Sci. 2021, 11, 6941. [Google Scholar] [CrossRef]
- Olejnik, A.; Kowalska, K.; Olkowicz, M.; Rychlik, J.; Juzwa, W.; Myszka, K.; Dembczyński, R.; Białas, W. Anti-Inflammatory Effects of Gastrointestinal Digested Sambucus nigra L. Fruit Extract Analysed in Co-Cultured Intestinal Epithelial Cells and Lipopolysaccharide-Stimulated Macrophages. J. Funct. Foods 2015, 19, 649–660. [Google Scholar] [CrossRef]
- Ciocoiu, M.; Mirón, A.; Mares, L.; Tutunaru, D.; Pohaci, C.; Groza, M.; Badescu, M. The Effects of Sambucus nigra Polyphenols on Oxidative Stress and Metabolic Disorders in Experimental Diabetes Mellitus. J. Physiol. Biochem. 2009, 65, 297–304. [Google Scholar] [CrossRef]
- Salvador, Â.; Król, E.; Lemos, V.; Santos, S.; Bento, F.; Costa, C.; Almeida, A.; Szczepankiewicz, D.; Kulczyński, B.; Krejpcio, Z.; et al. Effect of Elderberry (Sambucus nigra L.) Extract Supplementation in STZ-Induced Diabetic Rats Fed with a High-Fat Diet. Int. J. Mol. Sci. 2016, 18, 13. [Google Scholar] [CrossRef]
- Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory Activity of a Standardized Elderberry Liquid Extract against Clinically-Relevant Human Respiratory Bacterial Pathogens and Influenza A and B Viruses. BMC Complement Altern. Med. 2011, 11, 16. [Google Scholar] [CrossRef]
- Bartak, M.; Lange, A.; Słońska, A.; Cymerys, J. Antiviral and Healing Potential of Sambucus nigra Extracts. Bionatura 2020, 5, 1264–1270. [Google Scholar] [CrossRef]
- Mocanu, M.L.; Amariei, S. Elderberries—A Source of Bioactive Compounds with Antiviral Action. Plants 2022, 11, 740. [Google Scholar] [CrossRef]
- Farrell, N.J.; Norris, G.H.; Ryan, J.; Porter, C.M.; Jiang, C.; Blesso, C.N. Black Elderberry Extract Attenuates Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice. Br. J. Nutr. 2015, 114, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Coman, M.M.; Oancea, A.M.; Verdenelli, M.C.; Cecchini, C.; Bahrim, G.E.; Orpianesi, C.; Cresci, A.; Silvi, S. Polyphenol Content and In Vitro Evaluation of Antioxidant, Antimicrobial and Prebiotic Properties of Red Fruit Extracts. Eur. Food Res. Technol. 2018, 244, 735–745. [Google Scholar] [CrossRef]
- Reider, S.; Watschinger, C.; Längle, J.; Pachmann, U.; Przysiecki, N.; Pfister, A.; Zollner, A.; Tilg, H.; Plattner, S.; Moschen, A.R. Short- and Long-Term Effects of a Prebiotic Intervention with Polyphenols Extracted from European Black Elderberry—Sustained Expansion of Akkermansia spp. J. Pers. Med. 2022, 12, 1479. [Google Scholar] [CrossRef] [PubMed]
- Haș, I.M.; Teleky, B.-E.; Szabo, K.; Simon, E.; Ranga, F.; Diaconeasa, Z.M.; Purza, A.L.; Vodnar, D.-C.; Tit, D.M.; Nițescu, M. Bioactive Potential of Elderberry (Sambucus nigra L.): Antioxidant, Antimicrobial Activity, Bioaccessibility and Prebiotic Potential. Molecules 2023, 28, 3099. [Google Scholar] [CrossRef] [PubMed]
- Anhê, F.F.; Varin, T.V.; Le Barz, M.; Desjardins, Y.; Levy, E.; Roy, D.; Marette, A. Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Curr. Obes. Rep. 2015, 4, 389–400. [Google Scholar] [CrossRef]
- Alves-Santos, A.M.; Sugizaki, C.S.A.; Lima, G.C.; Naves, M.M.V. Prebiotic Effect of Dietary Polyphenols: A Systematic Review. J. Funct. Foods 2020, 74, 104169. [Google Scholar] [CrossRef]
- Brqnnum-Hansen, K.; Jacobsent, F.; Flink, D.J.M. Anthocyanin Colourants from Elderberry (Sambucus nigra L.). 1. Process Considerations for Production of the Liquid Extract. J. Food Technol. 1985, 20, 703–771. [Google Scholar] [CrossRef]
- Costa, C.P.; Patinha, S.; Rudnitskaya, A.; Santos, S.A.O.; Silvestre, A.J.D.; Rocha, S.M. Sustainable Valorization of Sambucus nigra L. Berries: From Crop Biodiversity to Nutritional Value of Juice and Pomace. Foods 2021, 11, 104. [Google Scholar] [CrossRef]
- Catană, M.; Catană, L.; Asănică, A.C.; Lazăr, M.-A.; Burnete, A.-G.; Constantinescu, F.; Teodorescu, R.I.; Belc, N. Biochemical Composition and Antioxidant Capacity of a Functional Ingredient Obtained from Elderberry (Sambucus nigra L.) Pomace. Sci. Pap. Ser. B Hortic. 2021, LXV, 715–721. [Google Scholar]
- Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E.J.; Bojarska, J.; Dąbrowska, A. Effect of Fruit Pomace Addition on Shortbread Cookies to Improve Their Physical and Nutritional Values. Plant Foods Hum. Nutr. 2016, 71, 307–313. [Google Scholar] [CrossRef]
- Nemetz, N.J.; Schieber, A.; Weber, F. Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules 2021, 26, 2689. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Monteiro, F.; Passos, C.P.; Silva, A.M.S.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Blanching Impact on Pigments, Glucosinolates, and Phenolics of Dehydrated Broccoli by-Products. Food Res. Int. 2020, 132, 109055. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.M.; Wessel, D.F.; Silva, A.M.S.; Saraiva, J.A.; Cardoso, S.M. Infusion from Opuntia Ficus-Indica Peels: The Effects of Drying and Steeping Conditions. Beverages 2023, 9, 97. [Google Scholar] [CrossRef]
- Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D.; Kluza, F.; Wójtowicz, A. Impact of Stabilizers on the Freezing Process, and Physicochemical and Organoleptic Properties of Coconut Milk-Based Ice Cream. LWT 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Clarke, C. Measuring Ice Cream. In The Science of Ice Cream; Royal Society of Chemistry: Cambridge, UK, 2004; pp. 126–128. ISBN 0854046291. [Google Scholar]
- Marshall, R.T.; Goff, H.D.; Hartel, R.W. Analyzing Frozen Desserts. In Ice Cream; Springer: Boston, MA, USA, 2003; pp. 295–325. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food, 2nd ed.; Food Science Text Series; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6487-8. [Google Scholar]
- Akca, S.; Akpinar, A. The Effects of Grape, Pomegranate, Sesame Seed Powder and Their Oils on Probiotic Ice Cream: Total Phenolic Contents, Antioxidant Activity and Probiotic Viability. Food Biosci. 2021, 42, 101203. [Google Scholar] [CrossRef]
- Mónica Giusti, M.; Wrolstad, R.E. Anthocyanins. In Handbook of Food Analytical Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; Volume 2, pp. 5–69. ISBN 9780471709084. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.R.; Ferreira, S.S.; Bastos, R.; Ferreira, I.; Cruz, M.T.; Coelho, E.; Passos, P.; Coimbra, M.A. Apple Pomace Extract as a Sustainable Food Ingredient. Antioxidants 2019, 8, 189. [Google Scholar] [CrossRef]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-Products a Source of Anthocyanins and Antioxidant Polyphenols. Ind. Crops Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Lee, J.; Finn, C.E. Anthocyanins and Other Polyphenolics in American Elderberry (Sambucus canadensis) and European Elderberry (S. nigra) Cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef]
- Kaack, K.; Fretté, X.C.; Christensen, L.P.; Landbo, A.-K.; Meyer, A.S. Selection of Elderberry (Sambucus nigra L.) Genotypes Best Suited for the Preparation of Juice. Eur. Food Res. Technol. 2008, 226, 843–855. [Google Scholar] [CrossRef]
- Cordeiro, T.; Fernandes, I.; Pinho, O.; Calhau, C.; Mateus, N.; Faria, A. Anthocyanin Content in Raspberry and Elderberry: The Impact of Cooking and Recipe Composition. Int. J. Gastron. Food Sci. 2021, 24, 100316. [Google Scholar] [CrossRef]
- Muse, M.R.; Hartel, R.W. Ice Cream Structural Elements That Affect Melting Rate and Hardness. J. Dairy. Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Skenderidis, P.; Mitsagga, C.; Lampakis, D.; Petrotos, K.; Giavasis, I. The Effect of Encapsulated Powder of Goji Berry (Lycium barbarum) on Growth and Survival of Probiotic Bacteria. Microorganisms 2020, 8, 57. [Google Scholar] [CrossRef] [PubMed]
TPC (mg GAE g−1) | TMAs (mg cy3glcE g−1) | ABTS•+ (mmol TE g−1) |
---|---|---|
2.98 ± 0.45 | 1.48 ± 0.18 | 21.10 ± 2.29 |
Sorbet | pH 2 | °Brix 2 | Overrun (%) |
---|---|---|---|
C | 3.52 ± 0.02 b | 26.25 ± 0.08 a,b | 13.7 |
P | 3.51 ± 0.05 b | 25.90 ± 0.25 b | 28.3 |
E-5 | 3.52 ± 0.01 b | 26.22 ± 0.08 a,b | 10.9 |
E-50 | 3.68 ± 0.05 a | 26.30 ± 0.09 a | 19.0 |
Sorbet | L* | a* | b* | ΔE |
---|---|---|---|---|
C | 46.1 ± 4.6 a | 27.3 ± 2.3 a | 10.3 ± 1.0 a,b | - |
P | 41.4 ± 4.4 a,b | 27.3 ± 2.4 a | 10.6 ± 2.0 a,b | 7.0 ± 2.7 a,b |
E-5 | 47.5 ± 6.1 a,b | 26.9 ± 1.6 a | 11.5 ± 1.0 a | 3.9 ± 1.8 b |
E-50 | 39.4 ± 1.1 b | 25.1 ± 3.3 a | 8.0 ± 1.0 b | 9.3 ± 3.9 a |
Sorbet | Visual Appearance | Creaminess | Coldness | Flavor | Taste Sensation | Sweetness | Acidity | Global Appreciation | Consumer Choice (%) |
---|---|---|---|---|---|---|---|---|---|
C | 7.6 ± 1.2 a | 7.0 ± 1.6 a | 7.0 ± 1.4 a | 6.8 ± 1.5 a | 6.9 ± 1.7 a | 6.6 ± 1.9 a | 6.0 ± 2.0 a | 7.2 ± 1.7 a | 37.5 |
P | 7.6 ± 0.9 a | 6.7 ± 1.6 a | 7.0 ± 1.6 a | 6.4 ± 1.9 a | 6.4 ± 1.6 a | 5.8 ± 2.1 a | 5.9 ± 1.9 a | 6.3 ± 1.7 a | 10.0 |
E-5 | 7.5 ± 1.2 a | 6.9 ± 1.6 a | 7.1 ± 1.4 a | 6.4 ± 1.6 a | 6.5 ± 1.9 a | 5.9 ± 2.2 a | 5.8 ± 2.1 a | 6.8 ± 1.8 a | 25.0 |
E-50 | 7.7 ± 1.0 a | 6.8 ± 1.8 a | 6.8 ± 1.4 a | 6.7 ± 1.9 a | 6.6 ± 1.9 a | 6.5 ± 2.2 a | 5.7 ± 2.1 a | 6.8 ± 1.8 a | 27.5 |
Sorbet | TPC (mg GAE kg−1) | TMAs (mg cy3glcE kg−1) | ABTS•+-Scavenging Activity (mmol TE kg−1) |
---|---|---|---|
C | 561.04 ± 7.93 b | 196.20 ± 2.60 b | 3.84 ± 0.07 b |
P | 643.38 ± 21.20 a,b | 223.27 ± 5.10 a,b | 4.20 ± 0.08 a,b |
E-5 | 655.60 ± 7.30 a,b | 249.43 ± 17.63 a | 4.23 ± 0.10 a,b |
E-50 | 665.03 ± 15.38 a | 259.29 ± 2.80 a | 4.39 ± 0.07 a |
Time (h) | pH of Growth Media | ||||
---|---|---|---|---|---|
Negative Control | Sorbet C | Sorbet P | Sorbet E-5 | Sorbet E-50 | |
0 | 6.24 ± 0.01 a | 6.12 ± 0.01 b | 6.20 ± 0.01 a,b | 6.20 ± 0.01 a,b | 6.15 ± 0.01 a,b |
3 | 6.24 ± 0.01 a | 6.17 ± 0.03 a,b | 6.20 ± 0.01 a,b | 6.15 ± 0.01 b | 6.20 ± 0.01 a,b |
8 | 5.89 ± 0.02 a | 5.83 ± 0.01 a,b | 5.85 ± 0.01 a,b | 6.87 ± 0.03 a,b | 5.81 ± 0.01 b |
24 | 5.22 ± 0.02 a | 5.13 ± 0.01 a,b | 5.09 ± 0.01 a,b | 5.17 ± 0.01 a,b | 5.04 ± 0.01 b |
48 | 4.80 ± 0.01 a | 4.59 ± 0.01 a,b | 4.61 ± 0.01 a,b | 4.62 ± 0.02 a,b | 4.57 ± 0.01 b |
Time (h) | Population of Microorganisms (log CFU/mL) | ||||
---|---|---|---|---|---|
Negative Control | Sorbet C | Sorbet P | Sorbet E-5 | Sorbet E-50 | |
0 | 6.22 ± 0.01 a | 6.55 ± 0.04 a | 6.47 ± 0.02 a | 6.40 ± 0.01 a | 6.47 ± 0.01 a |
8 | 8.13 ± 0.02 a | 7.76 ± 0.04 a | 7.77 ± 0.05 a | 7.69 ± 0.04 a | 7.61 ± 0.03 a |
24 | 8.94 ± 0.04 a | 9.12 ± 0.03 a | 8.96 ± 0.04 a | 9.00 ± 0.11 a | 9.11 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, C.M.B.; Fogeiro, É.; Cardoso, S.M.; Gonçalves, F.; Pinto, A.; Wessel, D.F. Towards the Valorization of Elderberry By-Product: Recovery and Use of Natural Ingredients for Sorbet Formulations. Appl. Sci. 2024, 14, 10328. https://doi.org/10.3390/app142210328
Neves CMB, Fogeiro É, Cardoso SM, Gonçalves F, Pinto A, Wessel DF. Towards the Valorization of Elderberry By-Product: Recovery and Use of Natural Ingredients for Sorbet Formulations. Applied Sciences. 2024; 14(22):10328. https://doi.org/10.3390/app142210328
Chicago/Turabian StyleNeves, Cláudia M. B., Élia Fogeiro, Susana M. Cardoso, Fernando Gonçalves, António Pinto, and Dulcineia F. Wessel. 2024. "Towards the Valorization of Elderberry By-Product: Recovery and Use of Natural Ingredients for Sorbet Formulations" Applied Sciences 14, no. 22: 10328. https://doi.org/10.3390/app142210328
APA StyleNeves, C. M. B., Fogeiro, É., Cardoso, S. M., Gonçalves, F., Pinto, A., & Wessel, D. F. (2024). Towards the Valorization of Elderberry By-Product: Recovery and Use of Natural Ingredients for Sorbet Formulations. Applied Sciences, 14(22), 10328. https://doi.org/10.3390/app142210328