Esports Training, Periodization, and Software—A Scoping Review
Abstract
:1. Introduction
- (1)
- First-person shooters (FPSs), e.g., Counter-Strike, Call of Duty, Overwatch, Valorant, and others;
- (2)
- Real-time strategy (RTS), e.g., StarCraft 2, Warcraft 3, Age of Empires, Stormgate, ZeroSpace;
- (3)
- Role-playing games (RPGs), e.g., The Witcher, The Elder Scrolls, Cyberpunk 2077, Fallout;
- (4)
- Multiplayer online battle arena (MOBA), e.g., League of Legends, Dota 2, Heroes of the Storm;
- (5)
- Fighting games, e.g., Tekken, Street Fighter, Mortal Kombat, Super Smash Bros;
- (6)
- Rhythm games, e.g., Guitar Hero, Beat Saber, Dance Dance Revolution;
- (7)
- Card games, e.g., Hearthstone, Magic: The Gathering;
- (8)
- Sports games, e.g., Rocket League, FIFA, NBA 2K, Madden NFL.
- RQ1:
- Since when has there been a steady increase in academic interest (expressed in the number of scientific publications) in the topic of esports?
- RQ2:
- What aspects of esports training have been the subject of scientific research and can they be described by models used in sports theory?
- RQ3:
- What types of software have been created to support esports training?
2. Methods
- (1)
- ACM Digital Library;
- (2)
- IEEE Xplore;
- (3)
- Scopus;
- (4)
- Springer Link;
- (5)
- Web of Science.
2.1. Search Strategy
2.2. Data Processing and Inclusion Criteria
3. Results
3.1. Training in Esports
3.1.1. Esports and Gaming: Mental Training
3.1.2. Physicality of Esports
3.1.3. Various Factors of Esports Performance
3.2. Informatics in Esports
4. Discussion
4.1. From Sports to Esports
4.1.1. Training Stimuli in Esports
4.1.2. When to Start Training?
4.1.3. Approaching Long-Term Development
- (1)
- Active start;
- (2)
- Fundamental;
- (3)
- Learn to train;
- (4)
- Training to train;
- (5)
- Training to compete;
- (6)
- Training to win;
- (7)
- (1)
- Discover, learn, and play (ages 0–12);
- (2)
- Develop and challenge (ages 10–16 years);
- (3)
- Train and compete (ages 13–19 years);
- (4)
- Excel for high performance or participate and succeed (ages ≥ 15 years);
- (5)
- Mentor and thrive for life [82].
4.1.4. Stimulus Effectiveness and Selection in Sports
4.2. From Esports to Sports
- (1)
- Action-by-action, decision-by-decision feedback;
- (2)
- Game-by-game feedback on tactics, strategies, and performance;
- (3)
- Session-by-session feedback;
- (4)
- Day-by-day feedback;
- (5)
- Microcycle (weekly) feedback;
- (6)
- Mesocycle (monthly) feedback;
- (7)
- Macrocycle (yearly) feedback, and more!
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCI | Brain–computer interface |
LSRT | Layered Stimulus Response Training |
IT | Information technology |
IEM | Intel Extreme Masters |
LTAD | Long-term athlete development |
RL | Reinforcement learning |
DDA | Dynamic difficulty adjustment |
ANN | Artificial neural network |
IoT | Internet of Things |
References
- Bányai, F.; Griffiths, M.D.; Király, O.; Demetrovics, Z. The Psychology of Esports: A Systematic Literature Review. J. Gambl. Stud. 2019, 35, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Ramirez, I.; Musculus, L.; Raab, M.; Laborde, S. Setting the scientific stage for esports psychology: A systematic review. Int. Rev. Sport Exerc. Psychol. 2020, 13, 319–352. [Google Scholar] [CrossRef]
- Leis, O.; Lautenbach, F. Psychological and physiological stress in non-competitive and competitive esports settings: A systematic review. Psychol. Sport Exerc. 2020, 51, 101738. [Google Scholar] [CrossRef]
- Beres, N.A.; Klarkowski, M.; Mandryk, R.L. Playing with Emotions: A Systematic Review Examining Emotions and Emotion Regulation in Esports Performance. Proc. ACM Hum. Comput. Interact. 2023, 7, 558–587. [Google Scholar] [CrossRef]
- Sanz-Matesanz, M.; Gea-García, G.M.; Martínez-Aranda, L.M. Physical and psychological factors related to player’s health and performance in esports: A scoping review. Comput. Hum. Behav. 2023, 143, 107698. [Google Scholar] [CrossRef]
- Jeffrey Shulze, M.M.; Ruvalcaba, O. The Biopsychosocial Factors That Impact eSports Players’ Well-Being: A Systematic Review. J. Glob. Sport Manag. 2023, 8, 478–502. [Google Scholar] [CrossRef]
- Kaufmann, E.; Bauersfeld, L.; Loquercio, A.; Müller, M.; Koltun, V.; Scaramuzza, D. Champion-level drone racing using deep reinforcement learning. Nature 2023, 620, 982–987. [Google Scholar] [CrossRef]
- Watson, B.; Spjut, J.; Kim, J.; Listman, J.; Kim, S.; Wimmer, R.; Putrino, D.; Lee, B. Esports and High Performance HCI. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA ’21, New York, NY, USA, 8–13 May 2021. [Google Scholar] [CrossRef]
- Sozański, H.; Sadowski, J.; Czerwiński, J. Podstawy Teorii i Technologii Treningu Sportowego; Akademia Wychowania Fizycznego Józefa Piłsudskiego Filia w Białej Podlaskiej: Biała Podlaska, Poland, 2015; Volume 2. [Google Scholar]
- Kasper, K. Sports Training Principles. Curr. Sport. Med. Rep. 2019, 18, 95–96. [Google Scholar] [CrossRef]
- Rathi, A.; Sharma, D.; Thapa, R.K. Effects of complex-descending versus traditional resistance training on physical fitness abilities of female team sports athletes. Biomed. Hum. Kinet. 2023, 15, 148–158. [Google Scholar] [CrossRef]
- Thapa, R.K.; Kumar, G.; Weldon, A.; Moran, J.; Chaabene, H.; Ramirez-Campillo, R. Effects of complex-contrast training on physical fitness in male field hockey athletes. Biomed. Hum. Kinet. 2023, 15, 201–210. [Google Scholar] [CrossRef]
- Adamczyk, J.G. Support Your Recovery Needs (SYRN)—A systemic approach to improve sport performance. Biomed. Hum. Kinet. 2023, 15, 269–279. [Google Scholar] [CrossRef]
- Boguszewski, D.; Krawczyk, A.; Dębek, M.; Adamczyk, J.G. The effects of foam rolling applied to delayed-onset muscle soreness of the quadriceps femoris after Tabata training. Biomed. Hum. Kinet. 2024, 16, 203–209. [Google Scholar] [CrossRef]
- Blizzard. s2client-proto. 2017. Available online: https://github.com/Blizzard/s2client-proto (accessed on 20 September 2024).
- Belicza, A. s2prot. 2016. Available online: https://github.com/icza/s2prot (accessed on 20 September 2024).
- Babcock, N. Boxcars. 2016. Available online: https://github.com/nickbabcock/boxcars (accessed on 20 September 2024).
- Xenopoulos, P. Awpy. 2020. Available online: https://github.com/pnxenopoulos/awpy (accessed on 20 September 2024).
- Peng, Q.; Dickson, G.; Scelles, N.; Grix, J.; Brannagan, P.M. Esports Governance: Exploring Stakeholder Dynamics. Sustainability 2020, 12, 8270. [Google Scholar] [CrossRef]
- Scholz, T.M. Deciphering the World of eSports. Int. J. Media Manag. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Scholz, T.M. Stakeholders in the eSports Industry. In eSports is Business: Management in the World of Competitive Gaming; Springer International Publishing: Cham, Switzerland, 2019; pp. 43–99. [Google Scholar] [CrossRef]
- Claypool, M.; Kica, A.; La Manna, A.; O’Donnell, L.; Paolillo, T. On the Impact of Software Patching on Gameplay for the League of Legends Computer Game. Comput. Games J. 2017, 6, 33–61. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Y.; Li, Z.; Liu, N.; Zhang, X. Research on the influence of balance patch on players’ character preference. Internet Res. 2020, 30, 995–1018. [Google Scholar] [CrossRef]
- Zhong, X.; Xu, J. Measuring the effect of game updates on player engagement: A cue from DOTA2. Entertain. Comput. 2022, 43, 100506. [Google Scholar] [CrossRef]
- Białecki, A.; Białecki, R.; Gajewski, J. Redefining Sports: Esports, Environments, Signals and Functions. Int. J. Electron. Telecommun. 2022, 68, 541–548. [Google Scholar] [CrossRef]
- Si, C.; Pisan, Y.; Tan, C.T.; Shen, S. An initial understanding of how game users explore virtual environments. Entertain. Comput. 2017, 19, 13–27. [Google Scholar] [CrossRef]
- Sjöblom, M.; Törhönen, M.; Hamari, J.; Macey, J. Content structure is king: An empirical study on gratifications, game genres and content type on Twitch. Comput. Hum. Behav. 2017, 73, 161–171. [Google Scholar] [CrossRef]
- Heldens, S.; Sclocco, A.; Dreuning, H.; van Werkhoven, B.; Hijma, P.; Maassen, J.; van Nieuwpoort, R.V. litstudy: A Python package for literature reviews. SoftwareX 2022, 20, 101207. [Google Scholar] [CrossRef]
- Scott, M.J.; Summerley, R.; Besombes, N.; Connolly, C.; Gawrysiak, J.; Halevi, T.; Jenny, S.E.; Miljanovic, M.; Stange, M.; Taipalus, T.; et al. Foundations for Esports Curricula in Higher Education. In Proceedings of the 2021 Working Group Reports on Innovation and Technology in Computer Science Education, ITiCSE-WGR ’21, New York, NY, USA, 26 June–1 July 2022; pp. 27–55. [Google Scholar] [CrossRef]
- Ibda, H.; Hakim, M.F.A.; Saifuddin, K.; Khaq, Z.; Sunoko, A. Esports Games in Elementary School: A Systematic Literature Review. Int. J. Inform. Vis. 2023, 7, 319–329. [Google Scholar] [CrossRef]
- Fiskaali, A.; Lieberoth, A.; Spindler, H. Exploring institutionalised esport in high school: A mixed methods study of well-being. In Proceedings of the European Conference on Games Based Learning, Brighton, UK, 24–25 September 2020; Volume 1, pp. 160–167. [Google Scholar] [CrossRef]
- Dynako, J.; Owens, G.W.; Loder, R.T.; Frimpong, T.; Gerena, R.G.; Hasnain, F.; Snyder, D.; Freiman, S.; Hart, K.; Kacena, M.A.; et al. Bibliometric and authorship trends over a 30 year publication history in two representative US sports medicine journals. Heliyon 2020, 6, e03698. [Google Scholar] [CrossRef]
- Kari, T.; Karhulahti, V.M. Do E-Athletes Move? A Study on Training and Physical Exercise in Elite E-Sports. Int. J. Gaming Comput. Mediat. Simul. 2016, 8, 53–66. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Yildiz, Y.; Bayraktar, I. Do e-athletes move? A study on physical activity level and body composition in elite e-sports. Phys. Educ. Stud. 2020, 24, 259i264. [Google Scholar] [CrossRef]
- Ersin, A.; Tezeren, H.C.; Pekyavas, N.O.; Asal, B.; Atabey, A.; Diri, A.; Gonen, I. The Relationship Between Reaction Time and Gaming Time in e-sports Players. Kinesiology 2022, 54, 36–42. [Google Scholar] [CrossRef]
- Sainz, I.; Collado-Mateo, D.; Coso, J.D. Effect of acute caffeine intake on hit accuracy and reaction time in professional e-sports players. Physiol. Behav. 2020, 224, 113031. [Google Scholar] [CrossRef]
- Wu, S.H.; Chen, Y.C.; Chen, C.H.; Liu, H.S.; Liu, Z.X.; Chiu, C.H. Caffeine supplementation improves the cognitive abilities and shooting performance of elite e-sports players: A crossover trial. Sci. Rep. 2024, 14, 2074. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Wu, W. Simulation Training of E-Sports Players Based on Wireless Sensor Network. Wirel. Commun. Mob. Comput. 2021, 2021, 9636951. [Google Scholar] [CrossRef]
- Argiles, M.; Quevedo-Junyent, L.; Erickson, G. Topical Review: Optometric Considerations in Sports Versus E-Sports. Percept. Mot. Ski. 2022, 129, 731–746. [Google Scholar] [CrossRef]
- Goulart, J.B.; Aitken, L.S.; Siddiqui, S.; Cuevas, M.; Cardenas, J.; Beathard, K.M.; Riechman, S.E. Nutrition, lifestyle, and cognitive performance in esport athletes. Front. Nutr. 2023, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, L.; Syrov, N.; Görtz, N.; Kaplan, A. BCI-Controlled Motor Imagery Training Can Improve Performance in e-Sports. In Proceedings of the 22nd International Conference on Human-Computer Interaction, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; 1224 CCIS. pp. 581–586. [Google Scholar] [CrossRef]
- Moritz, S.E. Translating the applied model of deliberate imagery use to esports. J. Imag. Res. Sport Phys. Act. 2023, 18, 20230014. [Google Scholar] [CrossRef]
- Cumming, J.; Quinton, M.L. Developing imagery ability in esport athletes using layered stimulus response training. J. Imag. Res. Sport Phys. Act. 2023, 18, 20220024. [Google Scholar] [CrossRef]
- Sanz-Matesanz, M.; Martínez-Aranda, L.M.; Gea-García, G.M. Effects of a Physical Training Program on Cognitive and Physical Performance and Health-Related Variables in Professional esports Players: A Pilot Study. Appl. Sci. 2024, 14, 2845. [Google Scholar] [CrossRef]
- Szépné, H.V.; Csernoch, L.; Balatoni, I. E-sports versus physical activity among adolescents. Balt. J. Health Phys. Act. 2019, 11, 38–47. [Google Scholar] [CrossRef]
- Fletcher, B.; James, D. Grassroots Esports Players: Improving Esports Cognitive Skills Through Incentivising Physical Exercise. In Proceedings of the Serious Games: Joint International Conference, JCSG 2021, Virtual Event, 12–13 January 2022; Springer: Berlin/Heidelberg, Germany, 2021; pp. 200–212. [Google Scholar] [CrossRef]
- Difrancisco-Donoghue, J.; Jenny, S.E.; Douris, P.C.; Ahmad, S.; Yuen, K.; Hassan, T.; Gan, H.; Abraham, K.; Sousa, A. Breaking up prolonged sitting with a 6 min walk improves executive function in women and men esports players: A randomised trial. BMJ Open Sport Exerc. Med. 2021, 7, 20220024. [Google Scholar] [CrossRef]
- Ekdahl, D. Both Physical and Virtual: On Immediacy in Esports. Front. Sport. Act. Living 2022, 4, 883765. [Google Scholar] [CrossRef]
- Pereira, A.M.; Brito, J.; Figueiredo, P.; Verhagen, E. Virtual sports deserve real sports medical attention. BMJ Open Sport Exerc. Med. 2019, 5, e000606. [Google Scholar] [CrossRef]
- Law, A.; Ho, G.; Moore, M. Care of the Esports Athlete. Curr. Sport. Med. Rep. 2023, 22, 224–229. [Google Scholar] [CrossRef]
- McGee, C.; Hwu, M.; Nicholson, L.L.; Ho, K.K. More than a game: Musculoskeletal injuries and a key role for the physical therapist in esports. J. Orthop. Sport. Phys. Ther. 2021, 51, 415–417. [Google Scholar] [CrossRef]
- Migliore, L. Prevention of Esports Injuries. In Handbook of Esports Medicine: Clinical Aspects of Competitive Video Gaming; Migliore, L., McGee, C., Moore, M.N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 213–240. [Google Scholar] [CrossRef]
- Lindberg, L.; Nielsen, S.B.; Damgaard, M.; Sloth, O.R.; Rathleff, M.S.; Straszek, C.L. Musculoskeletal pain is common in competitive gaming: A cross-sectional study among Danish esports athletes. BMJ Open Sport Exerc. Med. 2020, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Manci, E.; Gencturk, U.; Günay, E.; Guducu, C.; Herold, F.; Bediz, C.S. The influence of acute sprint exercise on cognition, gaming performance, and cortical hemodynamics in esports players and age-matched controls. Curr. Psychol. 2024, 43, 19643–19654. [Google Scholar] [CrossRef]
- Lam, A.T.W.; Perera, T.P.; Quirante, K.B.A.; Wilks, A.; Ionas, A.J.; Baxter, G.D. E-athletes’ lifestyle behaviors, physical activity habits, and overall health and wellbeing: A systematic review. Phys. Ther. Rev. 2020, 25, 449–461. [Google Scholar] [CrossRef]
- Voisin, N.; Besombes, N.; Laffage-Cosnier, S. Are Esports Players Inactive? A Systematic Review. Phys. Cult. Sport. Stud. Res. 2022, 97, 32–52. [Google Scholar] [CrossRef]
- Nicholson, M.; Thompson, C.; Poulus, D.; Pavey, T.; Robergs, R.; Kelly, V.; McNulty, C. Physical Activity and Self-Determination towards Exercise among Esports Athletes. Sport. Med. Open 2024, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Ketelhut, S.; Martin-Niedecken, A.L.; Zimmermann, P.; Nigg, C.R. Physical Activity and Health Promotion in Esports and Gaming-Discussing Unique Opportunities for an Unprecedented Cultural Phenomenon. Front. Sport. Act. Living 2021, 3, 8. [Google Scholar] [CrossRef]
- Trocchio, L. Nutrition for the Video Gamer; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 167–185. [Google Scholar] [CrossRef]
- Nagorsky, E.; Wiemeyer, J. The structure of performance and training in esports. PLoS ONE 2020, 15, e0237584. [Google Scholar] [CrossRef]
- Bikas, I.; Pfau, J.; Muender, T.; Alexandrovsky, D.; Malaka, R. Grinding to a Halt: The Effects of Long Play Sessions on Player Performance in Video Games. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, CHI PLAY Companion ’23, New York, NY, USA, 10–13 October 2023; pp. 36–42. [Google Scholar] [CrossRef]
- He, Y.; Tran, C.; Jiang, J.; Burghardt, K.; Ferrara, E.; Zheleva, E.; Lerman, K. Heterogeneous Effects of Software Patches in aMultiplayer Online Battle Arena Game. In Proceedings of the FDG ’21: Proceedings of the 16th International Conference on the Foundations of Digital Games, New York, NY, USA, 3–6 August 2021. [Google Scholar] [CrossRef]
- Yu, Y.; Nguyen, B.H.; Yu, F.; Huynh, V.N. Esports Game Updates and Player Perception: Data Analysis of PUBG Steam Reviews. In Proceedings of the 13th International Conference on Knowledge and Systems Engineering (KSE), Bangkok, Thailand, 10–12 November 2021. [Google Scholar] [CrossRef]
- Białecki, A.; Jakubowska, N.; Dobrowolski, P.; Białecki, P.; Krupiński, L.; Szczap, A.; Białecki, R.; Gajewski, J. SC2EGSet: StarCraft II Esport Replay and Game-state Dataset. Sci. Data 2023, 10, 600. [Google Scholar] [CrossRef]
- Wu, H.; Zong, Y.; Zhang, J.; Huang, K. MSC: A Dataset for Macro-Management in StarCraft II. arXiv 2023, arXiv:1710.03131. [Google Scholar] [CrossRef]
- Gao, Y. PGD: A Large-scale Professional Go Dataset for Data-driven Analytics. In Proceedings of the 2022 IEEE Conference on Games (CoG), Beijing, China, 21–24 August 2022; pp. 284–291. [Google Scholar] [CrossRef]
- Tanaka, T.; Simo-Serra, E. LoL-V2T: Large-scale esports video description dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 4552–4561. [Google Scholar] [CrossRef]
- Xu, J.H.; Nakano, Y.; Kong, L.; Iizuka, K. CS-lol: A Dataset of Viewer Comment with Scene in E-sports Live-streaming. In Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, CHIIR ’23, New York, NY, USA, 19–23 March 2023; pp. 422–426. [Google Scholar] [CrossRef]
- Xenopoulos, P.; Silva, C. ESTA: An Esports Trajectory and Action Dataset. arXiv 2022, arXiv:2209.09861. [Google Scholar] [CrossRef]
- Horst, R.; Zander, S.M.; Dörner, R. CS:Show—An Interactive Visual Analysis Tool for First-Person Shooter eSports Match Data. In Proceedings of the Entertainment Computing—ICEC 2021: 20th IFIP TC 14 International Conference, ICEC 2021, Coimbra, Portugal, 2–5 November 2021; pp. 15–27. [Google Scholar] [CrossRef]
- Afonso, A.P.; Carmo, M.B.; Gonçalves, T.; Vieira, P. VisuaLeague: Player performance analysis using spatial-temporal data. Multimed. Tools Appl. 2019, 78, 33069–33090. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.; Ahn, H.; Ahn, B. Implementation of user playstyle coaching using video processing and statistical methods in league of legends. Multimed. Tools Appl. 2021, 80, 34189–34201. [Google Scholar] [CrossRef]
- Spiricheva, N.; Akulich, S. Infographics Application for Visualization of E-Sports Gaming Activity. In Proceedings of the 2019 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 4–6 November 2019. [Google Scholar] [CrossRef]
- van den Broek, W.; Wallner, G.; Bernhaupt, R. Modata—Improving Dota 2 Experience and Spectatorship through Tangible Gameplay Visualization. In Proceedings of the Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, New York, NY, USA, 22–25 October 2019; CHI PLAY ’19 Extended Abstracts. pp. 723–730. [Google Scholar] [CrossRef]
- Font, J.M.; Mahlmann, T. DOTA 2 bot competition. IEEE Trans. Games 2019, 11, 285–289. [Google Scholar] [CrossRef]
- Bompa, T.; Buzzichelli, C. Periodization-6th Edition, 6th ed.; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
- Goodway, J.D.; Robinson, L.E. Developmental Trajectories in Early Sport Specialization: A Case for Early Sampling from a Physical Growth and Motor Development Perspective. Kinesiol. Rev. 2015, 4, 267–278. [Google Scholar] [CrossRef]
- Szymańska, E.; Żak, S.; Mleczko, E.; Nieroda, R.; Klocek, T. Once more on the methods for determining sensitive and critical periods in the motor development of children and the youth. J. Kinesiol. Exerc. Sci. 2016, 26, 29–50. [Google Scholar] [CrossRef]
- Arslan, Y.; Suveren, C.; Durhan, T.A. E-Sports Participation Motivation from the Perspective of Sports Sciences Students. Ann. Appl. Sport Sci. 2024, 12, 8. [Google Scholar] [CrossRef]
- Jasny, M. Sportowy wymiar maniaczenia przy komputerze, czyli kształtowanie sprawności fizycznej w ramach treningu w e-sporcie. In Sport w ponowoczesności. Konteksty, perspektywy badawcze, narracje; Wydawnictwo w Podwórku: Gdańsk, Poland, 2019; pp. 57–70. [Google Scholar]
- Ericsson, A.; Pool, R. Peak: Secrets from the New Science of Expertise; Mariner Books: Boston, MA, USA, 2016; p. 336. [Google Scholar]
- Brenner, J.S.; Council on Sports Medicine and Fitness. Sports Specialization and Intensive Training in Young Athletes. Pediatrics 2016, 138, e20162148. [Google Scholar] [CrossRef]
- Myer, G.D.; Jayanthi, N.; DiFiori, J.P.; Faigenbaum, A.D.; Kiefer, A.W.; Logerstedt, D.; Micheli, L.J. Sports Specialization, Part II: Alternative Solutions to Early Sport Specialization in Youth Athletes. Sport. Health 2016, 8, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Jayanthi, N.; Difiori, J.P.; Faigenbaum, A.D.; Kiefer, A.W.; Logerstedt, D.; Micheli, L.J. Sport Specialization, Part I: Does Early Sports Specialization Increase Negative Outcomes and Reduce the Opportunity for Success in Young Athletes? Sport. Health 2015, 7, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Borde, R. Effects of Sport-Specific Training during the Early Stages of Long-Term Athlete Development on Physical Fitness, Body Composition, Cognitive, and Academic Performances. Front. Physiol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Balyi, I. Sport System Building and Long-term athlete development in Britisch Columbia, Canada. Sports Med. BC 2001, 8, 22–28. [Google Scholar]
- Balyi, I.; Way, R.; Higgs, C. Long-Term Athlete Development; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar] [CrossRef]
- Meredith, R. Sensitive and critical periods during neurotypical and aberrant neurodevelopment: A framework for neurodevelopmental disorders. Neurosci. Biobehav. Rev. 2015, 50, 180–188. [Google Scholar] [CrossRef]
- Fuhrmann, D.; Knoll, L.J.; Blakemore, S.J. Adolescence as a Sensitive Period of Brain Development. Trends Cogn. Sci. 2015, 19, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Sawan, N.; Eltweri, A.; De Lucia, C.; Cavaliere, L.P.L.; Faccia, A.; Moşteanu, N.R. Mixed and Augmented Reality Applications in the Sport Industry. In Proceedings of the EBEE ’20: Proceedings of the 2020 2nd International Conference on E-Business and E-Commerce Engineering, Bangkok, Thailand, 29–31 December 2020; pp. 55–59. [Google Scholar] [CrossRef]
- Yasumoto, M. Bow Device for Accurate Reproduction of Archery in xR Environment. In Proceedings of the 25 th International Conference on Human-Computer Interaction, HCII 2023, Copenhagen, Denmark, 23–28 July 2023; pp. 203–214. [Google Scholar] [CrossRef]
- Yasumoto, M. Evaluation of the Difference in the Reality of the Bow Device with and Without Arrows. In Proceedings of the International Conference on Human-Computer Interaction, HCII 2022, Virtual Event, 26 June–1 July 2022; pp. 428–441. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.; et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 2020, 588, 604–609. [Google Scholar] [CrossRef]
- Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.; et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.; et al. Dota 2 with Large Scale Deep Reinforcement Learning. arXiv 2019, arXiv:1912.06680. [Google Scholar]
- Raiman, J.; Zhang, S.; Wolski, F. Long-Term Planning and Situational Awareness in OpenAI Five. arXiv 2019, arXiv:1912.06721. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; A Bradford Book: Cambridge, MA, USA, 2018. [Google Scholar]
- Damastuti, F.A.; Firmansyah, K.; Arif, Y.M.; Dutono, T.; Barakbah, A.; Hariadi, M. Dynamic Level of Difficulties Using Q-Learning and Fuzzy Logic. IEEE Access 2024, 12, 137775–137789. [Google Scholar] [CrossRef]
- Rosa, M.P.C.; Castanho, C.D.; e Silva, T.B.P.; Sarmet, M.M.; Jacobi, R.P. Dynamic Difficulty Adjustment by Performance and Player Profile in Platform Game. In Proceedings of the Entertainment Computing—ICEC 2023, Bologna, Italy, 15–17 November 2023; Ciancarini, P., Di Iorio, A., Hlavacs, H., Poggi, F., Eds.; Springer: Singapore, 2023; pp. 3–16. [Google Scholar]
- Silva, M.P.; do Nascimento Silva, V.; Chaimowicz, L. Dynamic difficulty adjustment on MOBA games. Entertain. Comput. 2017, 18, 103–123. [Google Scholar] [CrossRef]
- Mortazavi, F.; Moradi, H.; Vahabie, A.H. Dynamic difficulty adjustment approaches in video games: A systematic literature review. Multimed. Tools Appl. 2024, 83, 83227–83274. [Google Scholar] [CrossRef]
- Brutsaert, T.D.; Parra, E.J. What makes a champion?: Explaining variation in human athletic performance. Respir. Physiol. Neurobiol. 2006, 151, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Alsubai, S.; Sha, M.; Alqahtani, A.; Bhatia, M. Hybrid IoT-Edge-Cloud Computing-based Athlete Healthcare Framework: Digital Twin Initiative. Mob. Netw. Appl. 2023, 28, 2056–2075. [Google Scholar] [CrossRef]
- Umek, A.; Kos, A. Wearable sensors and smart equipment for feedback in watersports. Procedia Comput. Sci. 2018, 129, 496–502. [Google Scholar] [CrossRef]
- Wiecha, S.; Kasiak, P.S.; Szwed, P.; Kowalski, T.; Cieśliński, I.; Postuła, M.; Klusiewicz, A. VO2max prediction based on submaximal cardiorespiratory relationships and body composition in male runners and cyclists: A population study. eLife 2023, 12, e86291. [Google Scholar] [CrossRef]
- Rębiś, K.; Klusiewicz, A.; Długołęcka, B.; Różański, P.; Kowieski, K.; Kowalski, T. Estimation of Lactate Thresholds, Aerobic Capacity and Recovery Rate from Muscle Oxygen Saturation in Highly Trained Speed Skaters and Healthy Untrained Individuals. J. Clin. Med. 2024, 13, 5340. [Google Scholar] [CrossRef]
- Boguszewski, D.; Adamczyk, J.G.; Boguszewska, K.; Wrzosek, D.; Mrozek, N.; Waloch, M.; Białoszewski, D. Functional assessment of women practising combat sports and team sports using the Functional Movement Screen. Biomed. Hum. Kinet. 2019, 11, 90–96. [Google Scholar] [CrossRef]
- Sandbakk, Ø.; Pyne, D.B.; McGawley, K.; Foster, C.; Talsnes, R.K.; Solli, G.S.; Millet, G.P.; Seiler, S.; Laursen, P.B.; Haugen, T.; et al. The Evolution of World-Class Endurance Training: The Scientist’s View on Current and Future Trends. Int. J. Sport. Physiol. Perform. 2023, 18, 885–889. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białecki, A.; Michalak, B.; Gajewski, J. Esports Training, Periodization, and Software—A Scoping Review. Appl. Sci. 2024, 14, 10354. https://doi.org/10.3390/app142210354
Białecki A, Michalak B, Gajewski J. Esports Training, Periodization, and Software—A Scoping Review. Applied Sciences. 2024; 14(22):10354. https://doi.org/10.3390/app142210354
Chicago/Turabian StyleBiałecki, Andrzej, Bartłomiej Michalak, and Jan Gajewski. 2024. "Esports Training, Periodization, and Software—A Scoping Review" Applied Sciences 14, no. 22: 10354. https://doi.org/10.3390/app142210354
APA StyleBiałecki, A., Michalak, B., & Gajewski, J. (2024). Esports Training, Periodization, and Software—A Scoping Review. Applied Sciences, 14(22), 10354. https://doi.org/10.3390/app142210354