Numerical Estimation of Bending in Holographic Volume Gratings by Means of RCWA and Deep Learning
Abstract
:1. Introduction
2. Theory
2.1. Rigorous Coupled Wave Analysis—Shooting Method Approach
2.2. FNNs and CNNs Theory Foundations
3. Results
3.1. Suitability of the RCWA-Shooting Method
3.2. Deep Learning-Based Bending Estimator
FNN Only Versus Hybrid Model Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RCWA | Rigorous Coupled Wave Analysis |
FDTD | Finite Difference Time Domain |
CWT | Coupled Wave Theory |
FNN | Feedforward Neural Network |
CNN | Convolutional Neural Network |
BO | Bending Only |
RMSProp | Root Mean Square Propagation |
SGD | Stochastic Gradient Descent |
RCWA-SM | Rigorous Coupled Wave Analysis—Shooting Method |
SF-FDTD | Split Field Finite Difference Time Domain |
Appendix A. Deep Neural Network Models Pytorch Sequential Architectures Codes
Appendix A.1. FNN’s Architecture
# Model 1
model = torch.nn.Sequential(
torch.nn.Linear(70, 1176),
torch.nn.ReLU(),
torch.nn.Linear(1176, 712),
torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(712, 556),
torch.nn.ReLU(),
torch.nn.Linear(556, 256),
torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(256, 5)
)
Appendix A.2. CNN-FNN Hybrid Neural Network’s Architecture
# Model 2
model = torch.nn.Sequential(
Reshape(−1, 1, 70),
torch.nn.Conv1d(in_channels = 1,
out_channels = 64,
kernel_size = 7,
padding = ‘same’),
torch.nn.ReLU(),
torch.nn.MaxPool1d(2),
torch.nn.Conv1d(in_channels = 64,
out_channels = 128,
kernel_size = 7,
padding = ‘same’),
torch.nn.ReLU(),
torch.nn.MaxPool1d(2),
Reshape(−1, 2176),
torch.nn.Linear(2176, 512),
torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(512, 256),
torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(256, 5)
)
References
- Fink, U.; Rostalski, H.J.; Hirsch, H. Applications of holographic gratings to two-dimensional spectroscopy. Appl. Opt. 1996, 35, 1047. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Holography and its applications for industry 4.0: An overview. Internet Things -Cyber-Phys. Syst. 2022, 2, 42–48. [Google Scholar] [CrossRef]
- Mikulchyk, T.; Stoeva, P.; Kaworek, A.; Oubaha, M.; Rogers, B.; Martin, S.; Cody, D.; Naydenova, I. Characterisation of Holographic Recording in Environmentally Stable Photopolymerisable Glass. Appl. Sci. 2022, 12, 5969. [Google Scholar] [CrossRef]
- Weng, M.; Wang, Y.; Ren, X.; Lu, Q. Study on Two-Dimensional Exit Pupil Expansion for Diffractive Waveguide Based on Holographic Volume Grating. Appl. Sci. 2023, 13, 11858. [Google Scholar] [CrossRef]
- Yu, D.; He, Y.; Liu, H.; Wang, B.; Li, L.; Wang, R.; Luo, S. Characterizing the bending deformation of polymer utilizing the diffraction spectrum of a holographic grating on a flexible substrate. Opt. Lett. 2020, 45, 579–582. [Google Scholar] [CrossRef]
- Naydenova, I.; Jallapuram, R.; Toal, V.; Martin, S. A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer. Appl. Phys. Lett. 2008, 92, 031109. [Google Scholar] [CrossRef]
- Zhou, Y.; Hauser, A.W.; Bende, N.P.; Kuzyk, M.G.; Hayward, R.C. Waveguiding Microactuators Based on a Photothermally Responsive Nanocomposite Hydrogel. Adv. Funct. Mater. 2016, 26, 5447–5452. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Naydenova, I.; da Cruz Vasconcellos, F.; Blyth, J.; Lowe, C.R. Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chem. Rev. 2014, 114, 10654–10696. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Montelongo, Y.; da Cruz Vasconcellos, F.; Martinez-Hurtado, J.; Neupane, S.; Butt, H.; Qasim, M.M.; Blyth, J.; Burling, K.; Carmody, J.B.; et al. Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor. Nano Lett. 2014, 14, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T. Characteristics of Thick Hologram Grating Recorded in Absorptive Medium. Opt. Acta Int. J. Opt. 1978, 25, 1035–1053. [Google Scholar] [CrossRef]
- Kubota, T. The Bending of Interference Fringes inside a Hologram. Opt. Acta Int. J. Opt. 1979, 26, 731–743. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Diffraction analysis of dielectric surface-relief gratings. J. Opt. Soc. Am. 1982, 72, 1385. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Three-dimensional vector coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1983, 73, 1105. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K.; Grann, E.B.; Pommet, D.A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K.; Pommet, D.A.; Grann, E.B. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 1995, 12, 1077. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870. [Google Scholar] [CrossRef]
- Sun, W.; Fu, Q. Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices. Appl. Opt. 2000, 39, 5569. [Google Scholar] [CrossRef]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. In Genetic Programming and Evolvable Machines; The MIT Press: Cambridge, MA, USA, 2016; 800p, ISBN 0262035618. [Google Scholar] [CrossRef]
- Zhang, G. Neural networks for classification: A survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2000, 30, 451–462. [Google Scholar] [CrossRef]
- Panda, S.S.; Hegde, R.S. A learning based approach for designing extended unit cell metagratings. Nanophotonics 2022, 11, 345–358. [Google Scholar] [CrossRef]
- Martínez, J.C.; Sirvent-Verdú, J.J.; Bravo, J.C.; Pérez-Bernabeu, A.; Álvarez, M.L.; Francés, J.; Neipp, C. Estimation of characteristic parameters of holographic volume gratings based on machine learning. In Proceedings of the Photosensitive Materials and Their Applications III; International Society for Optics and Photonics; McLeod, R.R., Villalobos, I.P., Tomita, Y., Eds.; SPIE: Bellingham, WA, USA, 2024; Volume 13015, p. 1301516. [Google Scholar] [CrossRef]
- Kim, S.B.; Lee, S.H. Application of Deep Learning Techniques for the State of Charge Prediction of Lithium-Ion Batteries. Appl. Sci. 2024, 14, 8077. [Google Scholar] [CrossRef]
- Allani, H.; Santos, A.T.; Ribeiro-Vidal, H. Multidisciplinary Applications of AI in Dentistry: Bibliometric Review. Appl. Sci. 2024, 14, 7624. [Google Scholar] [CrossRef]
- Lee, K.H.; Choi, J.W.; Park, C.O.; Han, D.H.; Kang, M.S. A Development and Validation of an AI Model for Cardiomegaly Detection in Chest X-rays. Appl. Sci. 2024, 14, 7465. [Google Scholar] [CrossRef]
- Xiao, G.; Wang, Y.; Wu, R.; Li, J.; Cai, Z. Sustainable Maritime Transport: A Review of Intelligent Shipping Technology and Green Port Construction Applications. J. Mar. Sci. Eng. 2024, 12, 1728. [Google Scholar] [CrossRef]
- Scarselli, F.; Chung Tsoi, A. Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results. Neural Netw. 1998, 11, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Feng, F.; Huang, T. FNNS: An Effective Feedforward Neural Network Scheme with Random Weights for Processing Large-Scale Datasets. Appl. Sci. 2022, 12, 12478. [Google Scholar] [CrossRef]
- Touvron, H.; Bojanowski, P.; Caron, M.; Cord, M.; El-Nouby, A.; Grave, E.; Izacard, G.; Joulin, A.; Synnaeve, G.; Verbeek, J.; et al. ResMLP: Feedforward Networks for Image Classification with Data-Efficient Training. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 5314–5321. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, C. Hyperspectral image super-resolution using cluster-based deep convolutional networks. Signal Processing Image Commun. 2023, 110, 116884. [Google Scholar] [CrossRef]
- Feng, X.; Su, X.; Shen, J.; Jin, H. Single Space Object Image Denoising and Super-Resolution Reconstructing Using Deep Convolutional Networks. Remote Sens. 2019, 11, 1910. [Google Scholar] [CrossRef]
- Paul, S.; Mishra, D.; Marimuthu, S.K. Nested DWT–Based CNN Architecture for Monocular Depth Estimation. Sensors 2023, 23, 3066. [Google Scholar] [CrossRef]
- Yao, B.; Li, W.; Pan, W.; Yang, Z.; Chen, D.; Li, J.; Qu, J. Image reconstruction with a deep convolutional neural network in high-density super-resolution microscopy. Opt. Express 2020, 28, 15432. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811. [Google Scholar] [CrossRef]
- Chateau, N.; Hugonin, J.P. Algorithm for the rigorous coupled-wave analysis of grating diffraction. J. Opt. Soc. Am. A 1994, 11, 1321. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Abdeljaber, O.; Avci, O.; Gabbouj, M. 1-D Convolutional Neural Networks for Signal Processing Applications. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar] [CrossRef]
- Oh, C.; Escuti, M.J. Time-domain analysis of periodic anisotropic media at oblique incidence: An efficient FDTD implementation. Opt. Express 2006, 14, 11870. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; ICML’10. pp. 807–814. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Case | |||
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 0.5 | 0 | 0 |
2 | 0 | 0.5 | 0 |
3 | 0 | 0 | 0.5 |
4 | 0.1 | 0.1 | 0.1 |
5 | 0.1 | 0.2 | 0.2 |
6 | 0.1 | 0.3 | 0.3 |
Parameter | Error FNN | Error FNN (BO) | Error Hybrid | Error Hybrid (BO) |
---|---|---|---|---|
0.044554 | 0.043941 | 0.041073 | 0.040534 | |
0.048321 | 0.048787 | 0.045769 | 0.045369 | |
0.015857 | 0.017267 | 0.020191 | 0.018063 | |
d | 0.007719 | - | 0.008780 | - |
0.007626 | - | 0.010430 | - | |
total bending | 0.036244 | 0.036665 | 0.035678 | 0.034655 |
total | 0.024815 | 0.036665 | 0.025249 | 0.034655 |
Parameter | sd FNN | sd FNN (BO) | sd Hybrid | sd Hybrid (BO) |
---|---|---|---|---|
0.087227 | 0.088635 | 0.075095 | 0.073375 | |
0.087632 | 0.090564 | 0.076039 | 0.075379 | |
0.021851 | 0.023284 | 0.028523 | 0.026634 | |
d | 0.010985 | - | 0.011818 | - |
0.011211 | - | 0.013305 | - |
Parameter | Outliers FNN | Outliers FNN (BO) | Outliers Hybrid | Outliers Hybrid (BO) |
---|---|---|---|---|
22 | 25 | 16 | 15 | |
22 | 24 | 15 | 15 | |
9 | 9 | 12 | 13 | |
d | 3 | - | 1 | - |
4 | - | 2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colomina-Martínez, J.; Bravo, J.C.; Sirvent-Verdú, J.J.; Moya-Aliaga, A.; Francés, J.; Neipp, C.; Beléndez, A. Numerical Estimation of Bending in Holographic Volume Gratings by Means of RCWA and Deep Learning. Appl. Sci. 2024, 14, 10356. https://doi.org/10.3390/app142210356
Colomina-Martínez J, Bravo JC, Sirvent-Verdú JJ, Moya-Aliaga A, Francés J, Neipp C, Beléndez A. Numerical Estimation of Bending in Holographic Volume Gratings by Means of RCWA and Deep Learning. Applied Sciences. 2024; 14(22):10356. https://doi.org/10.3390/app142210356
Chicago/Turabian StyleColomina-Martínez, Jaume, Juan Carlos Bravo, Joan Josep Sirvent-Verdú, Adrián Moya-Aliaga, Jorge Francés, Cristian Neipp, and Augusto Beléndez. 2024. "Numerical Estimation of Bending in Holographic Volume Gratings by Means of RCWA and Deep Learning" Applied Sciences 14, no. 22: 10356. https://doi.org/10.3390/app142210356
APA StyleColomina-Martínez, J., Bravo, J. C., Sirvent-Verdú, J. J., Moya-Aliaga, A., Francés, J., Neipp, C., & Beléndez, A. (2024). Numerical Estimation of Bending in Holographic Volume Gratings by Means of RCWA and Deep Learning. Applied Sciences, 14(22), 10356. https://doi.org/10.3390/app142210356