Fast and Efficient Lunar Finite Element Gravity Model
Abstract
:1. Introduction
- At polynomial orders , convergence proves to be inefficient and slow, which requires tens of thousands of terms to obtain accuracy for higher-order gravity representation.
- SH is only accurate with spherical-shaped astronomical bodies. This means that the gravity of objects such as comets and oblate bodies cannot be modeled using this method.
- Computational efficiency;
- Memory allocation;
- Precision;
- Parallelization.
1.1. Finite Element Method
1.2. Chebyshev Polynomial Interpolation
1.3. Orbit Propagation
2. Orthogonal Approximation
3. Representations of Lunar Potential Using Orthogonal Finite Elements
3.1. Sampling: Radii and Shells
3.1.1. Radial Sampling
3.1.2. Shells and Polynomial Order
3.2. Orthogonal Approximation of the Gravitational Acceleration
Parallelization
3.3. Results of the FEM LP Analysis
4. FEM Application in Astrodynamics: Satellite Trajectory Propagation
Trajectory Propagation Using FEM Versus LP (100 × 100) SH Gravity Model
- Intel(R) Xeon(R) CPU 3.70 GHz, 16.0 GB of RAM;
- Windows 64-bit operating system, x64-based processor;
- MATLAB R2019a.
- Produce a set of initial values: , , and R. These values represent the spacecraft’s azimuth, elevation, and radius from the lunar surface, respectively, at .
- Set an “ending” position or time. This can be achieved by providing , or providing a time span.
- Produce a small trajectory across a small shell. Using the coefficient values saved at a particular radius from the previous FEM routine to calculate the acceleration of the spacecraft along this initial trajectory using both the FEM and SH approaches. At this point, the resulting computational time and error between the two methods are then compared.
- Generate satellite positions. Using MATLAB’s “ode45” function to solve the differential two-body problem represented as Equation (33), we feed in the acceleration values calculated from step 3, and a time span to find the spacecraft’s position as a function of time.
- Generate satellite velocities. To achieve this, the MATLAB function “fsolve” is adopted to solve the systems of nonlinear equations of several values to solve for the satellite’s velocity over the course of the small shell provided initial velocities of , , , the spacecraft’s position, and the time span.
- Generate a long-span satellite orbit trajectory. This is achieved, again, by utilizing the “ode45” function to generate satellite positions at a longer time span and the resulting final velocities.
- Test 1: Randomized position changes. Using MATLAB’s “rand” function, we randomize a uniformly distributed pseudorandom set of values for and , i.e., the changes in azimuth and elevation, respectively. Using these randomized values, two ranges for and are created:With these simulated ranges and a radius 100 km above the lunar surface, these values are then converted into Cartesian coordinates to obtain starting x, y, and z positions of the simulated spacecraft.
- Test 2: A Monte Carlo simulation of initial conditions. With this approach, randomized values are repeated for and under the conditions that and . This produces various amounts of ranges for and in which a randomly picked set of ranges is sought to achieve the initial positions of the simulated spacecraft.
- Test 3: Set starting and final positions. This approach is the most simple and straightforward, as it is reflective of the most basic problems in orbit propagation. It follows to start off with converting , , and R into the satellite’s initial Cartesian coordinate: , , and . Unlike the previous two approaches, in this test, the satellite’s final position is found by converting , , and R into the satellite’s final Cartesian coordinate: , , and . All that is left to do is to find the satellite’s positions during and .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drake, N. A Rogue Rocket Part Collided with the Moon; National Geographic: Washington, DC, USA, 2022. [Google Scholar]
- Chin, G.; Brylow, S.; Foote, M.; Garvin, J.; Kasper, J.; Keller, J.; Litvak, M.; Mitrofanov, I.; Paige, D.; Raney, K.; et al. Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission. Space Sci. Rev. 2007, 129, 391–419. [Google Scholar] [CrossRef]
- James, P.; Ermakov, A.; Sori, M. Requirements for gravity measurements on the anticipated Artemis III mission. arXiv 2020, arXiv:2009.03514. [Google Scholar] [CrossRef]
- Goossens, S.; Sabaka, T.; Wieczorek, M.; Neumann, G.; Mazarico, E.; Lemoine, F.; Nicholas, J.; Smith, D.; Zuber, M. High-Resolution Gravity Field Models from GRAIL Data and Implications for Models of the Density Structure of the Moon’s Crust. J. Geophys. Res. Planets 2020, 125. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Asmar, S.W.; Carranza, E.; Sjogren, W.L.; Yuan, D.N. Recent Gravity Models as a Result of the Lunar Prospector Mission. Icarus 2001, 150, 1–18. [Google Scholar] [CrossRef]
- NASA; Goddard & Arizona State University. Lunar Reconnaissance Orbiter Wide Angle Camera; NASA: Washington, DC, USA, 2011. [Google Scholar]
- Blitzer, L.; Weisfeld, M.; Wheelon, A.D. Perturbations of a Satellite’s Orbit Due to the Earth’s Oblateness. J. Appl. Phys. 1956, 27, 1141–1149. [Google Scholar] [CrossRef]
- Bills, B.G.; Ferrari, A.J. A harmonic analysis of lunar gravity. J. Geophys. Res. Solid Earth 1980, 85, 1013–1025. [Google Scholar] [CrossRef]
- Ishihara, Y.; Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Araki, H.; Noda, H.; Sasaki, S.; Iwata, T.; Hanada, H. Localized Gravity/Topography Correlation and Admittance Spectra one the Moon. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 19–24 April 2009; p. 3927. [Google Scholar]
- Konopliv, A.S.; Binder, A.B.; Hood, L.L.; Kucinskas, A.B.; Sjogren, W.L.; Williams, J.G. Improved Gravity Field of the Moon from Lunar Prospector. Science 1998, 281, 1476–1480. [Google Scholar] [CrossRef]
- Casotto, S.; Fantino, E. Evaluation of methods for spherical harmonic synthesis of the gravitational potential and its gradients. Adv. Space Res. 2007, 40, 69–75. [Google Scholar] [CrossRef]
- Jancaitis, J.R.; Junkins, J.L. Modeling in n dimensions using a weighting function approach. J. Geophys. Res. 1974, 79, 3361–3366. [Google Scholar] [CrossRef]
- Klipstein, W.M.; Arnold, B.W.; Enzer, D.G.; Ruiz, A.A.; Tien, J.Y.; Wang, R.T.; Dunn, C.E. The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Space Sci. Rev. 2013, 178, 57–76. [Google Scholar] [CrossRef]
- Balmino, G.; Vales, N.; Sylvain, B.; Briais, A. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J. Geod. 2011, 86, 499–520. [Google Scholar] [CrossRef]
- Rexer, M.; Hirt, C. Ultra-high-Degree Surface Spherical Harmonic Analysis Using the Gauss-Legendre and the Driscoll/Healy Quadrature Theorem and Application to Planetary Topography Models of Earth, Mars and Moon. Surv. Geophys. 2015, 36, 803–830. [Google Scholar] [CrossRef]
- Goossens, S.; Matsumoto, K.; Liu, Q.; Kikuchi, F.; Sato, K.; Hanada, H.; Ishihara, Y.; Noda, H.; Kawano, N.; Namiki, N.; et al. Lunar gravity field determination using SELENE same-beam differential VLBI tracking data. J. Geod. 2011, 85, 205–228. [Google Scholar] [CrossRef]
- Junkins, J.L. Investigation of Finite-Element Representations of the Geopotential. AIAA J. 1976, 14, 803–808. [Google Scholar] [CrossRef]
- Fahroo, F.; Ross, I.M. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method. J. Guid. Control Dyn. 2002, 25, 160–166. [Google Scholar] [CrossRef]
- Gong, Q.; Fahroo, F.; Ross, I.M. Spectral Algorithm for Pseudospectral Methods in Optimal Control. J. Guid. Control Dyn. 2008, 31, 460–471. [Google Scholar] [CrossRef]
- Tang, X.; Chen, J. Direct Trajectory Optimization and Costate Estimation of Infinite-horizon Optimal Control Problems Using Collocation at the Flipped Legendre-Gauss-Radau Points. IEEE/CAA J. Autom. Sin. 2016, 3, 174–183. [Google Scholar] [CrossRef]
- Bani Younes, A.H.A. Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2013. [Google Scholar]
- Atallah, A.M.; Younes, A.B. Parallel Evaluation of Chebyshev Approximations: Applications in Astrodynamics. J. Astronaut. Sci. 2022, 69, 692–717. [Google Scholar] [CrossRef]
- Engels, R.C.; Junkins, J.L. Local Representation of the Geopotential by Weighted Orthonormal Polynomials. J. Guid. Control 1980, 3, 55–61. [Google Scholar] [CrossRef]
- Junkins, J.L.; Miller, G.W.; Jancaitis, J.R. A weighting function approach to modeling of irregular surfaces. J. Geophys. Res. 1973, 78, 1794–1803. [Google Scholar] [CrossRef]
- Beylkin, G.; Cramer, R. Toward Multiresolution Estimation and Efficient Representation of Gravitational Fields. Celest. Mech. Dyn. Astron. 2002, 84, 87–104. [Google Scholar] [CrossRef]
- Lekien, F.; Marsden, J. Tricubic interpolation in three dimensions. Int. J. Numer. Methods Eng. 2005, 63, 455–471. [Google Scholar] [CrossRef]
- Colombi, A.; Hirani, A.N.; Villac, B.F. Adaptive Gravitational Force Representation for Fast Trajectory Propagation Near Small Bodies. J. Guid. Control Dyn. 2008, 31, 1041–1051. [Google Scholar] [CrossRef]
- Hujsak, R. Almost-Optimal Sensor Tasking using Auction Methods. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 14–17 September 2010; p. E29. [Google Scholar]
- Oltrogge, D. AstroHD: Astrodynamics Modeling with a Distinctly Digital Flavor. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar] [CrossRef]
- Boni, L.; Bassetto, M.; Mengali, G.; Quarta, A. Electric sail static structural analysis with finite element approach. Acta Astronaut. 2020, 175, 510–516. [Google Scholar] [CrossRef]
- Sophal Pou, L.; Garcia, R.; Mimoun, D.; Murdoch, N.; Karatekin, O. Determination of the gravitational potential and tidal stress of asteroids using the finite element method. In Proceedings of the 49th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018; p. 4755. [Google Scholar]
- Zheng, G.; Nie, H.; Chen, J.; Chuanzhi, C.; Lee, H. Dynamic analysis of lunar lander during soft landing using explicit finite element method. Acta Astronaut. 2018, 148, 69–81. [Google Scholar] [CrossRef]
- Atallah, A.; Bani Younes, A. Parallel Finite Element Gravity Model. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Atallah, A.; Bani Younes, A. A Comparative Study of Orbit Propagation Using Clenshaw-Curtis and Gauss-Legendre Quadrature Methods. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Junkins, J.; Bani Younes, A.; Woollands, R.; Bai, X. Picard Iteration, Chebyshev Polynomials and Chebyshev-Picard Methods: Application in Astrodynamics. J. Astronaut. Sci. 2015, 60, 623–653. [Google Scholar] [CrossRef]
- Bani Younes, A.; Junkins, J. An Adaptive Approach for Modified Chebyshev Picard Iteration. In Proceedings of the AAS 16-724, Advances in Astronautical Sciences: 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA, 14–18 February 2016; Volume 158. [Google Scholar]
- Junkins, J.L.; Younes, A.B.; Woollands, R.M.; Bai, X. Efficient and Adaptive Orthogonal Finite Element Representation of the Geopotential. J. Astronaut. Sci. 2017, 64, 118–155. [Google Scholar] [CrossRef]
- Bai, X. Modified Chebyshev-Picard Iteration Methods for Solution of Initial Value and Boundary Value Problems. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2011. [Google Scholar]
- Battin, R.H. An Introduction to the Mathematics and Methods of Astrodynamics; AIAA: Las Vegas, NV, USA, 1987. [Google Scholar]
- Chebyshev, P.L. Theorie de Mecanismes Connus Sous le Nom de Paralllogrammes; Mémoires des Savants étrangers présentés à l’Académie de Saint Pétersbourg: Saint Petersburg, Russia, 1857. [Google Scholar]
- Grant, J.A. Chebyshev Polynomials in Numerical Analysis. By L. Fox and I. B. Parker. Pp. ix, 205. 42s. 1968. (Oxford.). Math. Gaz. 1970, 54, 96–97. [Google Scholar] [CrossRef]
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; Chapman and Hall/CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Schaub, H.; Junkins, J.L. Analytical Mechanics of Space Systems; AIAA: Las Vegas, NV, USA, 2003. [Google Scholar] [CrossRef]
- Singla, P.; Junkins, J. Multi-Resolution Methods for Modeling and Control of Dynamical Systems; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008; pp. 1–299. [Google Scholar]
- Snay, R.A. Applicability of Array Algebra; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey: Silver Spring, MD, USA, 1978; pp. 459–461. [Google Scholar]
- Crassidis, J.L.; Junkins, J.L. Optimal Estimation of Dynamic Systems, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- MATLAB. Version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010. [Google Scholar]
- Konopliv, A.S.; Yuan, D.N. Lunar Prospector 100th Degree Gravity Model Development. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1999; p. 1067. [Google Scholar]
- Atallah, A.; Bani Younes, A. Parallel Integration of Perturbed Orbital Motion. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 59. [Google Scholar]
- Danby, J. Fundamentals of Celestial Mechanics, Richmond: Willman-Bell; Willmann-Bell, Inc.: Richmond, VA, USA, 1992. [Google Scholar]
- Montenbruck, O.; Gill, E.; Lutze, F. Satellite Orbits: Models, Methods, and Applications. Appl. Mech. Rev. 2002, 55, B27–B28. [Google Scholar] [CrossRef]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 12. [Google Scholar]
- Bradley, B.K. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2015. [Google Scholar]
- García-Pérez, A.; Sorribes-Palmer, F.; Alonso, G.; Ravanbakhsh, A. FEM simulation of space instruments subjected to shock tests by mechanical impact. Int. J. Impact Eng. 2019, 126, 11–26. [Google Scholar] [CrossRef]
- Read, J.; Bani Younes, A.; Junkins, J.; Turner, J. State Transtion Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration. J. Astronaut. Sci. 2015, 62, 148–167. [Google Scholar] [CrossRef]
- Branco, C.A. Conical Orbital Mechanics: A Rework of Classic Orbit Transfer Mechanics. Ph.D. Thesis, Old Dominion University, Norfolk, VA, USA, 2020. [Google Scholar]
- Cheng, Z.Y.; Yan, L.S. The Area Factors of the Conic Section and Its Application on Orbit Determination of Visual Binary. In New Frontiers in Binary Star Research; Leung, K.C., Nha, I.S., Eds.; Astronomical Society of the Pacific Conference Series; NASA Astrophysics Data System: San Francisco, CA, USA, 1993; Volume 38, p. 410. [Google Scholar]
- Trenti, M.; Hut, P. Gravitational N-body Simulations. arXiv 2008, arXiv:0806.3950. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, G.; Younes, A.B.; Atallah, A. Fast and Efficient Lunar Finite Element Gravity Model. Appl. Sci. 2024, 14, 10364. https://doi.org/10.3390/app142210364
Nguyen G, Younes AB, Atallah A. Fast and Efficient Lunar Finite Element Gravity Model. Applied Sciences. 2024; 14(22):10364. https://doi.org/10.3390/app142210364
Chicago/Turabian StyleNguyen, Giaky, Ahmad Bani Younes, and Ahmed Atallah. 2024. "Fast and Efficient Lunar Finite Element Gravity Model" Applied Sciences 14, no. 22: 10364. https://doi.org/10.3390/app142210364
APA StyleNguyen, G., Younes, A. B., & Atallah, A. (2024). Fast and Efficient Lunar Finite Element Gravity Model. Applied Sciences, 14(22), 10364. https://doi.org/10.3390/app142210364