Investigation of Adsorption and Young’s Modulus of Epoxy Resin–Sand Interfaces Using Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Simulation Methods
2.1. Molecular Model of Epoxy Resins
2.2. Molecular Model of Sand
2.3. Molecular Simulation
2.4. Epoxy Resin–Sand Surface Interactions
3. Results and Discussion
3.1. Hydrogen Bond Analysis
3.2. Adsorption Energy Analysis
3.3. Mechanical Property Analysis
3.4. Radius of Gyration Analysis
4. Conclusions
- 1.
- DGEDDS exhibited a significantly higher number of hydrogen bonds after adsorption, forming eight compared to zero for DGEBA and one for AEOR. This is because the high hydrogen bond density per unit molecular weight of DGEDDS after adsorption was 9.188 × 10−3, which was larger than those obtained from DGEBA and AEOR. The results indicated that DGEDDS established stronger intermolecular interactions with sand compared to DGEBA and AEOR.
- 2.
- The mechanical properties of three epoxy resins (DGEBA, DGEDDS, and AEOR) after sand adsorption showed minimal significant differences. While DGEBA exhibited slightly higher shear and Young’s moduli, approximately 18.1 ± 0.2 and 29.5 ± 0.2 , respectively, DGEDDS showed greater directional variability in these properties, potentially due to its increased polarity and enhanced intermolecular forces. AEOR, on the other hand, displayed the lowest shear and bulk moduli, indicating a weaker resistance to deformation.
- 3.
- DGEBA, with its more compact and rigid structure due to the bisphenol-A group, exhibited a smaller average Rg of 0.8–0.9 nm, while DGEDDS, containing sulfur atoms that increase flexibility, had a slightly larger average Rg of 0.8–1 nm. AEOR, characterized by its linear structure with long alkyl chains, displayed the largest Rg value, averaging 1.1–1.2 nm, indicating a more extended and flexible conformation. While DGEBA and DGEDDS displayed flexible conformations, AEOR maintained a notably rigid structure. These structural differences likely contributed to the varying mechanical properties observed for these epoxy resins after adsorption onto sand.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamb, V. Constructing the global sand crisis: Four reasons to interrogate crisis and scarcity in narrating extraction. Extr. Ind. Soc. 2023, 15, 101282. [Google Scholar] [CrossRef]
- Smaida, A.; Haddadi, S.; Nechnech, A. Improvement of the mechanical performance of dune sand for using in flexible pavements. Constr. Build. Mater. 2019, 208, 464–471. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Z.Y. Micro-mechanical analysis of caisson foundation in sand using DEM. Ocean Eng. 2020, 203, 107240. [Google Scholar] [CrossRef]
- Wang, K.; Miao, M.; Zhou, H. Effects of large-scale unloading on existing shield tunnels in sandy gravel strata. Geotech. Geol. Eng. 2021, 39, 3401–3416. [Google Scholar] [CrossRef]
- Khare, G.; Kumar, V.; Sardana, S.; Vishwakarma, G.K. Geoenvironmental and geotechnical assessment of soil slopes in the vicinity of Atal tunnel in Himachal Pradesh, India. Geomat. Nat. Hazards Risk 2022, 13, 1251–1269. [Google Scholar] [CrossRef]
- Barman, D.; Dash, S.K. Stabilization of expansive soils using chemical additives: A review. J. Rock Mech. Geotech. Eng. 2022, 14, 1319–1342. [Google Scholar] [CrossRef]
- Consoli, N.C.; Daassi-Gli, C.A.P.; Ruver, C.A.; Lotero, A.; Scheuermann Filho, H.C.; Moncaleano, C.J.; Lourenço, D.E. Lime–ground glass–sodium hydroxide as an enhanced sustainable binder stabilizing silica sand. J. Geotech. Geoenviron. Eng. 2021, 147, 06021011. [Google Scholar] [CrossRef]
- Baldovino, J.A.; de la Rosa, Y.E.N.; Calabokis, O.P. Insight on characterization through porosity-to-lime index of a stabilized soil for the long-term. Case Stud. Constr. Mater. 2024, 20, e02718. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Moghal, A.A.B.; Ebid, A.; Rehman, A.U.; Hanandeh, S.; Priyan, V. Estimating the strength of soil stabilized with cement and lime at optimal compaction using ensemble-based multiple machine learning. Sci. Rep. 2024, 14, 15308. [Google Scholar] [CrossRef]
- Nadeem, M.; Ullah, S.; Chen, S.; Alkahtani, M.Q.; Khan, M.A.; Salih, R.; Jian, L.; Mursaleen, M.; Islam, S.; Ahmad, J. Evaluation of engineering properties of clayey sand bio-mediated with terrazyme enzyme. Front. Mater. 2023, 10, 1195310. [Google Scholar] [CrossRef]
- Raheem, B.S.; Oladiran, G.; Oke, D.; Musa, S. Evaluation of strength properties of subgrade materials stabilized with bio-enzyme. Eur. J. Eng. Technol. Res. 2020, 5, 607–610. [Google Scholar]
- Vaddi, P.K.; Dey, S.; Bharath, C.N.; Pallavi, U. Effects of Bio-enzyme on the strength properties of soil. Chem. Inorg. Mater. 2024, 3, 100047. [Google Scholar]
- Liu, J.; Chen, Z.; Kanungo, D.P.; Song, Z.; Bai, Y.; Wang, Y.; Li, D.; Qian, W. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer. Eng. Geol. 2019, 252, 125–135. [Google Scholar] [CrossRef]
- Park, S.S.; Lee, J.S.; Yoon, K.B.; Woo, S.W.; Lee, D.E. Application of an acrylic polymer and epoxy emulsion to red clay and sand. Polymers 2021, 13, 3410. [Google Scholar] [CrossRef] [PubMed]
- Muguda, S.; Hughes, P.N.; Augarde, C.E.; Perlot, C.; Walter Bruno, A.; Gallipoli, D. Cross-linking of biopolymers for stabilizing earthen construction materials. Build. Res. Inf. 2022, 50, 502–514. [Google Scholar] [CrossRef]
- Archibong, G.; Sunday, E.; Akudike, J.; Okeke, O.; Amadi, C. A review of the principles and methods of soil stabilization. Int. J. Adv. Acad. Res.|Sci. 2020, 6, 2488–9849. [Google Scholar]
- Li, Y.; Fang, X.; Shen, C.; Jiang, W.; Huang, S.; Guoliang, M. Review of Bio-Enzyme for Soil Improvement. Biogeotechnics 2024, 100143. [Google Scholar] [CrossRef]
- Arabani, M.; Shalchian, M.M. A review of the use of bio-based substances in soil stabilization. Environ. Dev. Sustain. 2024, 26, 13685–13737. [Google Scholar] [CrossRef]
- Chudzik, J.; Bieliński, D.M.; Demchuk, Y.; Bratychak, M.; Astakhova, O. Influence of Modified Epoxy Dian Resin on Properties of Nitrile-Butadiene Rubber (NBR). Materials 2022, 15, 2766. [Google Scholar] [CrossRef]
- Gunka, V.; Hrynchuk, Y.; Prysiazhnyi, Y.; Demchuk, Y.; Sidun, I.; Reutskyy, V.; Bratychak, M. Investigation of the Impact of Epoxy Compounds Based on Environmentally Friendly and Renewable Raw Materials in Bitumen Modification Processes. In Environmental Technology and Sustainability; Apple Academic Press: Waretown, NJ, USA, 2024; pp. 97–126. [Google Scholar]
- Liu, J.; Bai, Y.; Song, Z.; Kanungo, D.P.; Wang, Y.; Bu, F.; Chen, Z.; Shi, X. Stabilization of sand using different types of short fibers and organic polymer. Constr. Build. Mater. 2020, 253, 119164. [Google Scholar] [CrossRef]
- Yuan, J.; Pei, Z.; Yang, S.; Yu, H.; Hu, X.; Liu, H. Preparation and characterization of an eco-friendly sand-fixing agent utilizing nanosilica/polymer composites. J. Appl. Polym. Sci. 2023, 140, e53804. [Google Scholar] [CrossRef]
- Anastassiou, A.; Mavrantzas, V.G. Molecular structure and work of adhesion of poly(n-butyl acrylate) and poly(n-butyl acrylate-co-acrylic acid) on α-quartz, α-ferric oxide, and α-ferrite from detailed molecular dynamics simulations. Macromolecules 2015, 48, 8262–8284. [Google Scholar] [CrossRef]
- Shi, Y.F.; Sun, Y.Y.; Gao, B.; Xu, H.X.; Wu, J.C. Importance of Organic Matter to the Retention and Transport of Bisphenol A and Bisphenol S in Saturated Soils. Water Air Soil Pollut. 2019, 230. [Google Scholar] [CrossRef]
- Jiang, T.W.; Reddy, K.S.K.; Chen, Y.C.; Wang, M.W.; Chang, H.C.; Abu-Omar, M.M.; Lin, C.H. Recycling Waste Polycarbonate to Bisphenol A-Based Oligoesters as Epoxy-Curing Agents, and Degrading Epoxy Thermosets and Carbon Fiber Composites into Useful Chemicals. ACS Sustain. Chem. Eng. 2022, 10, 2429–2440. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, D.J.; Jin, B.S.; Wu, S.X. Theoretical investigation on the formation mechanism of carbonate ion in microbial self-healing concrete: Combined QC calculation and MD simulation. Constr. Build. Mater. 2022, 342, 128000. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, D.J.; Wu, W.; Jin, B.S.; Wu, S.X. Hydration inhibition mechanism of gypsum on tricalcium aluminate from ReaxFF molecular dynamics simulation and quantum chemical calculation. Mol. Simul. 2021, 47, 1465–1476. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, D.J.; Xie, J.J.; Jin, B.S.; Wu, S.X. Transformation mechanism of carbamic acid elimination and hydrolysis reaction in microbial self-healing concrete. Mol. Simul. 2022, 48, 719–735. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, D.J.; Xie, J.J.; Tang, C.M.; Jin, B.S.; Wu, S.X. Mechanism of urea decomposition catalyzed by Sporosarcina pasteurii urease based on quantum chemical calculations. Mol. Simul. 2021, 47, 1335–1348. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Liu, C.B.; Yuan, S.L. Coarse-grained molecular dynamics simulation of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J. Colloid Interface Sci. 2012, 386, 205–211. [Google Scholar] [CrossRef]
- Prasitnok, O.; Prasitnok, K. Molecular dynamics simulations of copolymer compatibilizers for polylactide/poly (butylene succinate) blends. Phys. Chem. Chem. Phys. 2023, 25, 5619–5626. [Google Scholar] [CrossRef]
- Ma, S.J.; Chen, P.; Xu, J.L.; Xiong, X.H. Molecular dynamics simulations of key physical properties and microstructure of epoxy resin cured with different curing agents. J. Mater. Sci. 2022, 57, 1123–1133. [Google Scholar] [CrossRef]
- Huang, W.; Geng, X.Y.; Li, J.; Zhou, C.Y.; Liu, Z. Molecular dynamics study on the adsorption and modification mechanism of polymeric sand-fixing agent. Polymers 2022, 14, 3365. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shi, B.; Jiang, H.T.; Huang, H.; Wang, G.H.; Kamai, T. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. Eng. Geol. 2011, 117, 114–120. [Google Scholar] [CrossRef]
- Lyu, W.; Zhou, Z.; Huang, J.; Yan, K. Study on adsorption behavior of a new type gemini surfactant onto quartz surface by a molecular dynamics method. Nano 2022, 17, 2150151. [Google Scholar] [CrossRef]
- Quezada, G.R.; Piceros, E.; Saavedra, J.H.; Robles, P.; Jeldres, R.I. Polymer affinity with quartz (101) surface in saline solutions: A molecular dynamics study. Miner. Eng. 2022, 186, 107750. [Google Scholar] [CrossRef]
- Cheng, Z.Y.Y.; Zhu, Y.M.; Li, Y.J.; Butt, S. Experimental and MD simulation of 3-dodecyloxypropanamine and 3-tetradecyloxypropylamine adsorbed onto quartz (1 0 1) surface. Int. J. Min. Sci. Technol. 2021, 31, 1033–1042. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Yang, X.B.; Sun, Z.Q.; Miao, Z.J.; Wang, H.D.; Lyu, Y. Modification treatment and properties research of fiber reinforced silicon dioxide composites. Cailiao Gongcheng/J. Mater. Eng. 2020, 48, 48–53. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, B.; Yu, C.; Zhang, M.Y. Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil. Yantu Lixue/Rock Soil Mech. 2022, 43, 2421–2430. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, D.S. Effect of functionality and content of epoxidized soybean oil on the physical properties of a modified diglycidyl ether of bisphenol A resin system. J. Appl. Polym. Sci. 2021, 138, 50441. [Google Scholar] [CrossRef]
- Dagdag, O.; Harfi, A.E.; Essamri, A.; Bachiri, A.E.; Hajjaji, N.; Erramli, H.; Hamed, O.; Jodeh, S. Anticorrosive performance of new epoxy-amine coatings based on zinc phosphate tetrahydrate as a nontoxic pigment for carbon steel in NaCl medium. Arab. J. Sci. Eng. 2018, 43, 5977–5987. [Google Scholar] [CrossRef]
- Varganici, C.D.; Rosu, L.; Rosu, D.; Hamciuc, C.; Rosca, I.; Vasiliu, A.L. Effect of hardener type on the photochemical and antifungal performance of epoxy and oligophosphonate S–IPNs. Polymers 2022, 14, 3784. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; He, Y.; Liu, X.; Xiong, C.; Zhou, X.; Xue, C.; Ji, H. N-Hydroxyphthalimide-Catalyzed Epoxidation of Inactive Aliphatic Olefins with Air at Room Temperature. Asian J. Org. Chem. 2021, 10, 3349–3354. [Google Scholar] [CrossRef]
- Ruehlmann, J.; Korschens, M. Soil particle density as affected by soil texture and soil organic matter: 2. Predicting the effect of the mineral composition of particle-size fractions. Geoderma 2020, 375, 114543. [Google Scholar] [CrossRef]
- Chuang, I.S.; Maciel, G.E. Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics. J. Am. Chem. Soc. 1996, 118, 401. [Google Scholar] [CrossRef]
- Bone, M.A.; Macquart, T.; Hamerton, I.; Howlin, B.J. A novel approach to atomistic molecular dynamics simulation of phenolic resins using symthons. Polymers 2020, 12, 926. [Google Scholar] [CrossRef]
- Meunier, M.; Robertson, S. Materials studio 20th anniversary. Mol. Simul. 2021, 47, 537–539. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Schneider, H.-J. Noncovalent interactions: A brief account of a long history. J. Phys. Org. Chem. 2022, 35. [Google Scholar] [CrossRef]
- Zuo, X.; Wang, B.; Ejeromedoghene, O.; Ye, S.; Fu, G. Performance exploration of polyvinyl alcohol/modified glass fiber composites based on hydrogen bonding interactions. J. Mol. Struct. 2023, 1294. [Google Scholar] [CrossRef]
- Yan, L.J.; Yang, Y.; Jiang, H.; Zhang, B.J.; Zhang, H. The adsorption of methyl methacrylate and vinyl acetate polymers on α-quartz surface: A molecular dynamics study. Chem. Phys. Lett. 2016, 643, 1–5. [Google Scholar] [CrossRef]
- Tavakoli, D.; Tarighat, A. Molecular dynamics study on the mechanical properties of Portland cement clinker phases. Comput. Mater. Sci. 2016, 119, 65–73. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
Types of Epoxy Resins | Chemical Formula | Molecular Weight (g·mol−1) | Epoxy Value (mol) | References |
---|---|---|---|---|
DGEBA | C57H64O10 | 904 | 0.222 | [40] |
DGEDDS | C48H46O16S3 | 870 | 0.230 | [41] |
AEOR | C56H86O14 | 983 | 1.424 | [42] |
Adsorption System Types | |||||
---|---|---|---|---|---|
DGEBA-Sand | 174 | 0 | 174 | 0 | 0 |
DGEDDS-Sand | 192 | 2 | 182 | 8 | 9.188 × 10−3 |
AEOR-Sand | 151 | 0 | 150 | 1 | 1.017 × 10−3 |
Interface Models | Value of Poisson’s Ratio | ||||
---|---|---|---|---|---|
DGEBA–Sand | 29.5767 (Reuss) | 17.7002 (Reuss) | 45.8205 (X) | 0.2803 (XY) | 0.1965 (YZ) |
29.5878 (Voigt) | 18.6745 (Voigt) | 45.6388 (Y) | 0.1942 (XZ) | 0.2185 (ZX) | |
29.5823 (Hill) | 18.1874 (Hill) | 51.5474 (Z) | 0.2792 (YX) | 0.2220 (ZY) | |
DGEDDS–Sand | 29.5140 (Reuss) | 17.6058 (Reuss) | 44.8274 (X) | 0.2807 (XY) | 0.1967 (YZ) |
29.5247 (Voigt) | 18.6088 (Voigt) | 45.7942 (Y) | 0.1971 (XZ) | 0.2238 (ZX) | |
29.5194 (Hill) | 18.1073 (Hill) | 50.9026 (Z) | 0.2868 (YX) | 0.2186 (ZY) | |
AEOR–Sand | 29.4350 (Reuss) | 17.7204 (Reuss) | 45.1663 (X) | 0.2830 (XY) | 0.1953 (YZ) |
29.4597 (Voigt) | 18.7226 (Voigt) | 44.8343 (Y) | 0.1920 (XZ) | 0.2206 (ZX) | |
29.4473 (Hill) | 18.2215 (Hill) | 51.8890 (Z) | 0.2809 (YX) | 0.2260 (ZY) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, D.; Pi, X.; Cai, L.; Wang, X.; Wu, C.; Liu, R. Investigation of Adsorption and Young’s Modulus of Epoxy Resin–Sand Interfaces Using Molecular Dynamics Simulation. Appl. Sci. 2024, 14, 10383. https://doi.org/10.3390/app142210383
Shen D, Pi X, Cai L, Wang X, Wu C, Liu R. Investigation of Adsorption and Young’s Modulus of Epoxy Resin–Sand Interfaces Using Molecular Dynamics Simulation. Applied Sciences. 2024; 14(22):10383. https://doi.org/10.3390/app142210383
Chicago/Turabian StyleShen, Dejian, Xueran Pi, Lili Cai, Xin Wang, Chunying Wu, and Ruixin Liu. 2024. "Investigation of Adsorption and Young’s Modulus of Epoxy Resin–Sand Interfaces Using Molecular Dynamics Simulation" Applied Sciences 14, no. 22: 10383. https://doi.org/10.3390/app142210383
APA StyleShen, D., Pi, X., Cai, L., Wang, X., Wu, C., & Liu, R. (2024). Investigation of Adsorption and Young’s Modulus of Epoxy Resin–Sand Interfaces Using Molecular Dynamics Simulation. Applied Sciences, 14(22), 10383. https://doi.org/10.3390/app142210383