Automatic Watershed Segmentation of Cancerous Lesions in Unsupervised Breast Histology Images
Abstract
:1. Introduction
2. Methods and Techniques
2.1. Dataset
2.1.1. Dataset Preparation/Pre-Processing
2.1.2. Data Augmentation
2.1.3. Data Stain Normalization
2.2. Image Enhancement
2.2.1. Thresholding
2.2.2. Morphology Operations
2.2.3. Distance Transform
2.3. Segmentation
2.3.1. Connected Components
2.3.2. Watershed Segmentation
3. Results and Discussion
Limitations
4. Conclusions and Future Work
Future Work
- Data Availability and Integrity—most deep learning approaches require significantly large dataset sizes to achieve meaningful and effective performance results. Therefore, there is a need for more publicly available BC histology image datasets to aid deep learning.
- Regularization methods—to improve the performance of models. This can be done through model hyper-parameter tuning such as optimizing learning rates, dropout, loss functions, activation functions, and early stopping methods.
- Blended Approaches—combining various/several methods to form a hybrid method that improves overall evaluation performance. This combination can occur at any step of the model namely; pre-processing, combining various attributes of different models to form one that will enhance the training, extraction, detection, and classification of nuclei objects. Additionally, in the future, our work can expand to reach out and diagnose image datasets of other human glands histology images, not limited to just BC histology images.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Alshanbari, H.; Amain, S.; Shuttelworth, J.; Slman, K.; Muslam, S. Automatic segmentation in breast cancer using watershed algorithm. Int. J. Biomed. Eng. Sci. 2015, 2, 1–6. [Google Scholar]
- Nayak, T.; Bhat, N.; Bhat, V.; Shetty, S.; Javed, M.; Nagabhushan, P. Automatic segmentation and breast density estimation for cancer detection using an efficient watershed algorithm. In Data Analytics and Learning: Proceedings of DAL 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 347–358. [Google Scholar]
- Kaur, A.; Rashid, M.; Bashir, A.K.; Parah, S.A. Detection of breast cancer masses in mammogram images with watershed segmentation and machine learning approach. In Artificial Intelligence for Innovative Healthcare Informatics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 35–60. [Google Scholar]
- Shahin, O.R.; Ayadi, R.; Ghorbel, O. Mammogram Breast Cancer Detection using Fast Watershed Segmentation. Int. J. 2020, 9, 1–6. [Google Scholar]
- Sadad, T.; Hussain, A.; Munir, A.; Habib, M.; Ali Khan, S.; Hussain, S.; Yang, S.; Alawairdhi, M. Identification of breast malignancy by marker-controlled watershed transformation and hybrid feature set for healthcare. Appl. Sci. 2020, 10, 1900. [Google Scholar] [CrossRef]
- Veta, M.; Huisman, A.; Viergever, M.A.; van Diest, P.J.; Pluim, J.P. Marker-controlled watershed segmentation of nuclei in H&E stained breast cancer biopsy images. In Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 30 March–2 April 2011; pp. 618–621. [Google Scholar]
- Lal, S.; Desouza, R.; Maneesh, M.; Kanfade, A.; Kumar, A.; Perayil, G.; Alabhya, K.; Chanchal, A.K.; Kini, J. A robust method for nuclei segmentation of H&E stained histopathology images. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020; pp. 453–458. [Google Scholar]
- Kaushal, C.; Singla, A. Automated segmentation technique with self-driven post-processing for histopathological breast cancer images. CAAI Trans. Intell. Technol. 2020, 5, 294–300. [Google Scholar] [CrossRef]
- Zebari, D.A.; Zeebaree, D.Q.; Abdulazeez, A.M.; Haron, H.; Hamed, H.N.A. Improved threshold based and trainable fully automated segmentation for breast cancer boundary and pectoral muscle in mammogram images. IEEE Access 2020, 8, 203097–203116. [Google Scholar] [CrossRef]
- Kiran, I.; Raza, B.; Ijaz, A.; Khan, M.A. DenseRes-Unet: Segmentation of overlapped/clustered nuclei from multi organ histopathology images. Comput. Biol. Med. 2022, 143, 105267. [Google Scholar] [CrossRef] [PubMed]
- Kowal, M.; Żejmo, M.; Skobel, M.; Korbicz, J.; Monczak, R. Cell nuclei segmentation in cytological images using convolutional neural network and seeded watershed algorithm. J. Digit. Imaging 2020, 33, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Qiao, S.; Hao, Y.; Bai, Y.; Cheng, R.; Zhang, W.; Zhang, G. Breast cancer histopathological images recognition based on two-stage nuclei segmentation strategy. PLoS ONE 2022, 17, e0266973. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, V.A.; Kumar, M.S.; Patan, R.; Kallam, S.; Mohamed, M.Y.N. Segmentation of nuclei in histopathology images using fully convolutional deep neural architecture. In Proceedings of the 2020 IEEE International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 9–10 September 2020; pp. 1–7. [Google Scholar]
- Guatemala-Sanchez, V.R.; Peregrina-Barreto, H.; Lopez-Armas, G. Nuclei segmentation on histopathology images of breast carcinoma. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 26–30 July 2021; pp. 2622–2628. [Google Scholar]
- Xie, L.; Qi, J.; Pan, L.; Wali, S. Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images. Neurocomputing 2020, 376, 166–179. [Google Scholar] [CrossRef]
- Kurmi, Y.; Chaurasia, V. Content-based image retrieval algorithm for nuclei segmentation in histopathology images: CBIR algorithm for histopathology image segmentation. Multimed. Tools Appl. 2021, 80, 3017–3037. [Google Scholar] [CrossRef]
- Vahadane, A.; Sethi, A. Towards generalized nuclear segmentation in histological images. In Proceedings of the 13th IEEE International Conference on BioInformatics and BioEngineering, Chania, Greece, 10–13 November 2013; pp. 1–4. [Google Scholar]
- Shen, P.; Qin, W.; Yang, J.; Hu, W.; Chen, S.; Li, L.; Wen, T.; Gu, J. Segmenting multiple overlapping nuclei in H&E stained breast cancer histopathology images based on an improved watershed. In Proceedings of the 2015 IET International Conference on Biomedical Image and Signal Processing (ICBISP 2015), Beijing, China, 19 November 2015; pp. 1–4. [Google Scholar]
- Veta, M.; Van Diest, P.J.; Kornegoor, R.; Huisman, A.; Viergever, M.A.; Pluim, J.P. Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE 2013, 8, e70221. [Google Scholar]
- Baker, Q.B.; Banat, S.; Eaydat, E.; Alsmirat, M. Automated detection of benign and malignant in breast histopathology images. In Proceedings of the 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 28 October–1 November 2018; pp. 1–5. [Google Scholar]
- Shu, J.; Fu, H.; Qiu, G.; Kaye, P.; Ilyas, M. Segmenting overlapping cell nuclei in digital histopathology images. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5445–5448. [Google Scholar]
- Majanga, V.; Viriri, S. Dental images’ segmentation using threshold connected component analysis. Comput. Intell. Neurosci. 2021, 2021, 2921508. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Gimenez, F.; Yi, D.; Rubin, D. Differential data augmentation techniques for medical imaging classification tasks. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2017; Volume 2017, p. 979. [Google Scholar]
- Garcea, F.; Serra, A.; Lamberti, F.; Morra, L. Data augmentation for medical imaging: A systematic literature review. Comput. Biol. Med. 2023, 152, 106391. [Google Scholar] [CrossRef] [PubMed]
- Araújo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Polónia, A.; Campilho, A. Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 2017, 12, e0177544. [Google Scholar] [CrossRef] [PubMed]
- Veta, M.; Pluim, J.P.; Van Diest, P.J.; Viergever, M.A. Breast cancer histopathology image analysis: A review. IEEE Trans. Biomed. Eng. 2014, 61, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Macenko, M.; Niethammer, M.; Marron, J.S.; Borland, D.; Woosley, J.T.; Guan, X.; Schmitt, C.; Thomas, N.E. A method for normalizing histology slides for quantitative analysis. In Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; pp. 1107–1110. [Google Scholar]
Dataset | Augmented Images | After Watershed Images |
---|---|---|
Accuracy | 95% | 98% |
Reference Authors | Watershed-Related Methods | Accuracy |
---|---|---|
Veta et al. [7] | Marker-controlled watershed | 81.5% |
Hu et al. [13] | Marker-based watershed | 92% |
Lal et al. [8] | Adaptive deconvolution+multi-level thresholding | 94.6% |
Kaushal et al. [9] | Thresholding+ Post processing morphology operations | 93.5% |
Kiran et al. [11] | DenseResidual-Unets | 90.03% |
Kowal et al. [12] | CNN+Watershed transform | 83.4% |
Natarajan et al. [14] | LinkNet Deep neural network | 97.2% |
Guatemala et al. [15] | Morphology operations+ Adaptive watershed transform | 75% |
Xie et al. [16] | Deep Convolution neural networks+ Marker-controlled watershed | 87.8% |
Kurmi et al. [17] | Content based Image retrieval algorithm | 94.4% |
Proposed Method | Masked-watershed +RNN | 98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majanga, V.; Mnkandla, E. Automatic Watershed Segmentation of Cancerous Lesions in Unsupervised Breast Histology Images. Appl. Sci. 2024, 14, 10394. https://doi.org/10.3390/app142210394
Majanga V, Mnkandla E. Automatic Watershed Segmentation of Cancerous Lesions in Unsupervised Breast Histology Images. Applied Sciences. 2024; 14(22):10394. https://doi.org/10.3390/app142210394
Chicago/Turabian StyleMajanga, Vincent, and Ernest Mnkandla. 2024. "Automatic Watershed Segmentation of Cancerous Lesions in Unsupervised Breast Histology Images" Applied Sciences 14, no. 22: 10394. https://doi.org/10.3390/app142210394
APA StyleMajanga, V., & Mnkandla, E. (2024). Automatic Watershed Segmentation of Cancerous Lesions in Unsupervised Breast Histology Images. Applied Sciences, 14(22), 10394. https://doi.org/10.3390/app142210394