Effect of Dielectric Properties of Cochlea on Electrode Insertion Guidance Based on Impedance Variation
Abstract
:1. Introduction
- Impedance variation based on the EAs that are placed at the center and border of the ST by considering both capacitive and static (resistive) effects;
- Variation in the electrical potential waveform to observe the capacitive effect;
- Parametrizing the ST conductivity by keeping constant other layers’ dielectric properties to examine the impact of this layer on the results;
- Showing smooth electrical potential and current density variations over the outer wall of the ST based on QS and TS.
2. Methods
2.1. Cochlea Model Consideration
2.2. Computational Model Validation
2.3. Electrode Array (EA) Modeling
2.4. Simulation Pulse Design
2.5. Tissue Dielectric Properties
2.6. Finite Element Discretization and Simulation
2.7. Electrical Impedance Measurement Procedures
3. Results
3.1. Capacitive Effect
3.2. Bioimpedance Measurement
3.3. Current Density and Electrical Potential Distributions
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deafness and Hearing Loss. Available online: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 22 April 2024).
- Holden, L.K.; Finley, C.C.; Firszt, J.B.; Holden, T.A.; Brenner, C.; Potts, L.G.; Gotter, B.D.; Vanderhoof, S.S.; Mispagel, K.; Heydebrand, G.; et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 2014, 34, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Salkim, E.; Zamani, M.; Jiang, D.; Saeed, S.R.; Demosthenous, A. Insertion Guidance Based on Impedance Measurements of a Cochlear Electrode Array. Front. Comput. Neurosci. 2022, 16, 862126. [Google Scholar] [CrossRef] [PubMed]
- Hoskison, E.; Mitchell, S.; Coulson, C. Systematic review: Radiological and histological evidence of cochlear implant insertion trauma in adult patients. Cochlear Implant. Int. 2017, 18, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Starovoyt, A.; Quirk, B.C.; Putzeys, T.; Kerckhofs, G.; Nuyts, J.; Wouters, J.; McLaughlin, R.A.; Verhaert, N. An optically guided cochlear implant sheath for real-time monitoring of electrode insertion into the human cochlea. Sci. Rep. 2022, 12, 19234. [Google Scholar] [CrossRef]
- Rotteveel, L.J.; Proops, D.W.; Ramsden, R.T.; Saeed, S.R.; van Olphen, A.F.; Mylanus, E.A. Cochlear implantation in 53 patients with otosclerosis: Demographics, computed tomographic scanning, surgery, and complications. Otol. Neurotol. 2004, 25, 943–952. [Google Scholar] [CrossRef]
- Mens, L.H.M. Advances in Cochlear Implant Telemetry: Evoked Neural Responses, Electrical Field Imaging, and Technical Integrity. Trends Amplif. 2007, 11, 143–159. [Google Scholar] [CrossRef]
- Miller, C.A.; Brown, C.J.; Abbas, P.J.; Chi, S.L. The clinical application of potentials evoked from the peripheral auditory system. Hear. Res. 2008, 242, 184–197. [Google Scholar] [CrossRef]
- Vanpoucke, F.J.; Zarowski, A.J.; Peeters, S.A. Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. IEEE Trans. Biomed. Eng. 2004, 51, 2174–2183. [Google Scholar] [CrossRef]
- Newbold, C.; Mergen, S.; Richardson, R.; Seligman, P.; Millard, R.; Cowan, R.; Shepherd, R. Impedance changes in chronically implanted and stimulated cochlear implant electrodes. Cochlear Implant. Int. 2014, 15, 191–199. [Google Scholar] [CrossRef]
- Tan, C.; Svirsky, M.; Anwar, A.; Kumar, S.; Caessens, B.; Carter, P.; Treaba, C.; Roland, J.T. Real-time measurement of electrode impedance during intracochlear electrode insertion. Laryngoscope 2013, 123, 1028–1032. [Google Scholar] [CrossRef]
- Salkim, E. Electrode Array Position Guiding in Cochlea Based on Impedance Variation: Computational Study. Muş Alparslan Üniversitesi Mühendislik Mimar. Fakültesi Derg. 2020, 1, 64–71. [Google Scholar]
- Salkim, E.; Zamani, M.; Demosthenous, A. Detection of Electrode Proximity to the Cochlea Wall Based on Impedance Variation: A Preliminary Computational Study. Int. J. Simul. Syst. Sci. Technol. 2020, 13, 1–4. [Google Scholar] [CrossRef]
- Frijns, J.H.M.; de Snoo, S.L.; Schoonhoven, R. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 1995, 87, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.-J.; Yu, Y.; Zhang, Y.-H.; Liu, X.-D.; Sun, Z.-J.; Yao, W.-J.; Zhang, T.-Y.; Wang, C.; Li, C.-L. Three-dimensional finite element analysis on cochlear implantation electrode insertion. Biomech. Model. Mechanobiol. 2023, 22, 467–478. [Google Scholar] [CrossRef]
- Bai, S.; Encke, J.; Obando-Leitón, M.; Weiß, R.; Schäfer, F.; Eberharter, J.; Böhnke, F.; Hemmert, W. Electrical Stimulation in the Human Cochlea: A Computational Study Based on High-Resolution Micro-CT Scans. Front. Neurosci. 2019, 13, 1312. [Google Scholar] [CrossRef]
- Salkim, E. Analysis of tissue electrical properties on bio-impedance variation of upper limps. Turk. J. Electr. Eng. Comput. Sci. 2022, 30, 1839–1850. [Google Scholar] [CrossRef]
- Butson, C.R.; McIntyre, C.C. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin. Neurophysiol. 2005, 116, 2490–2500. [Google Scholar] [CrossRef]
- Bédard, C.; Kröger, H.; Destexhe, A. Modeling Extracellular Field Potentials and the Frequency-Filtering Properties of Extracellular Space. Biophys. J. 2004, 86, 1829–1842. [Google Scholar] [CrossRef]
- Hrncirik, F.; Roberts, I.; Sevgili, I.; Swords, C.; Bance, M. Models of Cochlea Used in Cochlear Implant Research: A Review. Ann. Biomed. Eng. 2023, 51, 1390–1407. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef]
- Wong, P.; George, S.; Tran, P.; Sue, A.; Carter, P.; Li, Q. Development and validation of a high-fidelity finite-element model of monopolar stimulation in the implanted Guinea pig cochlea. IEEE Trans. Biomed. Eng. 2016, 63, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Aebischer, P.; Meyer, S.; Caversaccio, M.; Wimmer, W. Intraoperative Impedance-Based Estimation of Cochlear Implant Electrode Array Insertion Depth. IEEE Trans. Biomed. Eng. 2021, 68, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Al Abed, A.; Pinyon, J.L.; Foster, E.; Crous, F.; Cowin, G.J.; Housley, G.D.; Lovell, N.H. Computational Simulation Expands Understanding of Electrotransfer-Based Gene Augmentation for Enhancement of Neural Interfaces. Front. Neurosci. 2019, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, S.; Handler, M.; Saba, R.; Garnham, C.; Baumgarten, D. Computer Simulation of the Electrical Stimulation of the Human Vestibular System: Effects of the Reactive Component of Impedance on Voltage Waveform and Nerve Selectivity. J. Assoc. Res. Otolaryngol. 2022, 23, 815–833. [Google Scholar] [CrossRef]
- Castle, N.; Liang, J.; Smith, M.; Petersen, B.; Matson, C.; Eldridge, T.; Zhang, K.; Lee, C.-H.; Liu, Y.; Dai, C. Finite Element Modeling of Residual Hearing after Cochlear Implant Surgery in Chinchillas. Bioengineering 2023, 10, 539. [Google Scholar] [CrossRef]
- Fellner, A.; Heshmat, A.; Werginz, P.; Rattay, F. A finite element method framework to model extracellular neural stimulation. J. Neural Eng. 2022, 19, 022001. [Google Scholar] [CrossRef]
- Martinek, J.; Stickler, Y.; Reichel, M.; Mayr, W.; Rattay, F. A Novel Approach to Simulate Hodgkin-Huxley-like Excitation with COMSOL Multiphysics. Artif. Organs 2008, 32, 614–619. [Google Scholar] [CrossRef]
- Pettersen, F.-J.; Høgetveit, J.O. From 3D tissue data to impedance using Simpleware ScanFE+IP and COMSOL Multiphysics—A tutorial. J. Electr. Bioimpedance 2011, 2, 13–32. [Google Scholar] [CrossRef]
- Hanekom, T.; Hanekom, J.J. Three-dimensional models of cochlear implants: A review of their development and how they could support management and maintenance of cochlear implant performance. Netw. Comput. Neural Syst. 2016, 27, 67–106. [Google Scholar] [CrossRef]
- Salkim, E.; Shiraz, A.; Demosthenous, A. Influence of cellular structures of skin on fiber activation thresholds and computation cost Influence of cellular structures of skin on fi ber activation thresholds and computation cost. Biomed. Phys. Eng. Express 2018, 5, 015015. [Google Scholar] [CrossRef]
- Salunke, R.G.; Desai, D.G.; Singh, A.K.; Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar]
- Tracey, B.H.; Williams, M. Computationally efficient bioelectric field modeling and effects of frequency-dependent tissue capacitance. J. Neural Eng. 2011, 8, 036017. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.W.; Sim, J.Y.; Ahn, C.G.; Ku, Y. Electrical impedance of upper limb enables robust wearable identity recognition against variation in finger placement and environmental factors. Biosensors 2021, 11, 398. [Google Scholar] [CrossRef]
- Evers, J.; Sridhar, K.; Liegey, J.; Brady, J.; Jahns, H.; Lowery, M. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation. J. Neural Eng. 2022, 19, 046004. [Google Scholar] [CrossRef]
- Grant, P.F.; Lowery, M.M. Effect of dispersive conductivity and permittivity in volume conductor models of deep brain stimulation. IEEE Trans. Biomed. Eng. 2010, 57, 2386–2393. [Google Scholar] [CrossRef]
- Hedjoudje, A.; Hayden, R.; Dai, C.; Ahn, J.; Rahman, M.; Risi, F.; Zhang, J.; Mori, S.; Della Santina, C.C. Virtual Rhesus Labyrinth Model Predicts Responses to Electrical Stimulation Delivered by a Vestibular Prosthesis. JARO-J. Assoc. Res. Otolaryngol. 2019, 20, 313–339. [Google Scholar] [CrossRef]
Parameters | Geometrical Model | Anatomical Model |
---|---|---|
Discretization time | <1 min | ≈40 min |
Number of elements | 0.2 M | 2.33 M |
Computation time | <1 min | 7 h 16 min |
Mesh quality | 0.65 | 0.6 |
Difference in results | ≈2% | ≈2% |
Anatomical Layers | Conductivity (S/m) |
---|---|
Scalas | 1.43 |
Basilar membrane | 0.0125 |
Spiral ligament | 1.67 |
Cochlea wall | 0.3 |
Bony layer | 0.0156 |
Anatomical Layers | Conductivity (σ) | Relative Permittivity (εr) |
---|---|---|
Scalas | 1.789–2.46 | 16.6–68.4 |
Basilar membrane | 2.02 × 10−1– 9.78 × 10−1 | 2.57 × 107–5.48 × 101 |
Spiral ligament | 2.51 × 10−1–7.6 × 10−1 | 1.99 × 107–4.56 × 101 |
Cochlea wall | 4.08 × 10−2–3.12 × 10−1 | 3 × 104–6.2 |
Bony layer | 2.04 × 10−2–1.56 × 10−1 | 5.22 × 102–1.24 × 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salkim, E. Effect of Dielectric Properties of Cochlea on Electrode Insertion Guidance Based on Impedance Variation. Appl. Sci. 2024, 14, 10408. https://doi.org/10.3390/app142210408
Salkim E. Effect of Dielectric Properties of Cochlea on Electrode Insertion Guidance Based on Impedance Variation. Applied Sciences. 2024; 14(22):10408. https://doi.org/10.3390/app142210408
Chicago/Turabian StyleSalkim, Enver. 2024. "Effect of Dielectric Properties of Cochlea on Electrode Insertion Guidance Based on Impedance Variation" Applied Sciences 14, no. 22: 10408. https://doi.org/10.3390/app142210408
APA StyleSalkim, E. (2024). Effect of Dielectric Properties of Cochlea on Electrode Insertion Guidance Based on Impedance Variation. Applied Sciences, 14(22), 10408. https://doi.org/10.3390/app142210408