Reduction of Submicron-Sized Aerosols by Aerodynamically Assisted Electrical Attraction with Micron-Sized Aerosols
Abstract
:1. Introduction
2. Theory
3. Numerical
4. Experiment
5. Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, J.; Liu, J.; Sun, P.; Wan, Y.; Fan, Y.; Xiao, X. Experimental investigation on particle number emission from diesel engine with bipolar discharge coagulation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 1524–1533. [Google Scholar] [CrossRef]
- Bin, H.; Yang, Y.; Cai, L.; Zhulin, Y.; Roszak, S.; Linjun, Y. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators. Powder Technol. 2018, 335, 186–194. [Google Scholar] [CrossRef]
- Hautanen, J.; Kilpeläinen, M.; Kauppinen, E.I.; Lehtinen, K.; Jokiniemi, J. Electrical agglomeration of aerosol particles in an alternating electric field. Aerosol Sci. Technol. 1995, 22, 181–189. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, J.B.; Hwang, J.; Park, K.S. An experimental study of electrical agglomeration of fine particles in an alternating electric field. In Proceedings of the 7th International Conference on Electrostatic Precipitation, Kyongju, Republic of Korea, 20–25 September 1998. [Google Scholar]
- Jaworek, A.; Sobczyk, A.; Marchewicz, A.; Krupa, A.; Czech, T.; Śliwiński, Ł.; Ottawa, A.; Charchalis, A. Two-stage vs. two-field electrostatic precipitator. J. Electrost. 2017, 90, 106–112. [Google Scholar] [CrossRef]
- Chen, H.; Luo, Z.; Jiang, J.; Zhou, D.; Lu, M.; Fang, M.; Cen, K. Effects of simultaneous acoustic and electric fields on removal of fine particles emitted from coal combustion. Powder Technol. 2015, 281, 12–19. [Google Scholar] [CrossRef]
- Sobczyk, A.; Marchewicz, A.; Krupa, A.; Jaworek, A.; Czech, T.; Śliwiński, Ł.; Kluk, D.; Ottawa, A.; Charchalis, A. Enhancement of collection efficiency for fly ash particles (PM2.5) by unipolar agglomerator in two-stage electrostatic precipitator. Sep. Purif. Technol. 2017, 187, 91–101. [Google Scholar] [CrossRef]
- Lehtinen, K.E.J.; Jokiniemi, J.K.; Kauppinen, E.I.; Hautanen, J. Kinematic coagulation of charged droplets in an alternating electric field. Aerosol Sci. Technol. 1995, 23, 422–430. [Google Scholar] [CrossRef]
- Laitinen, A.; Hautanen, J.; Keskinen, J.; Kauppinen, E.; Jokiniemi, J.; Lehtinen, K. Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow. J. Electrost. 1996, 38, 303–315. [Google Scholar] [CrossRef]
- Kildesø, J.; Bhatia, V.K.; Lind, L.; Johnson, E.; Johansen, A. An experimental investigation for agglomeration of aerosols in alternating electric fields. Aerosol Sci. Technol. 1995, 23, 603–610. [Google Scholar] [CrossRef]
- Ji, J.-H.; Hwang, J.; Bae, G.-N.; Kim, Y.-G. Particle charging and agglomeration in DC and AC electric fields. J. Electrost. 2004, 61, 57–68. [Google Scholar] [CrossRef]
- Choi, H.S.; Hwang, J. Reduction of submicron-sized aerosols emission in electrostatic precipitation by electrical attraction with micron-sized aerosols. Powder Technol. 2021, 377, 882–889. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, L.; Shen, A.; Zhou, L.; Wu, H. Combined effect of chemical and turbulent agglomeration on improving the removal of fine particles by different coupling mode. Powder Technol. 2019, 344, 242–250. [Google Scholar] [CrossRef]
- Chen, D.; Wu, K.; Mi, J. Experimental investigation of aerodynamic agglomeration of fine ash particles from a 330 MW PC-fired boiler. Fuel 2016, 165, 86–93. [Google Scholar] [CrossRef]
- Liu, H.; Yang, F.; Tan, H.; Li, Z.; Feng, P.; Du, Y. Experimental and numerical investigation on the structure characteristics of vortex generators affecting particle agglomeration. Powder Technol. 2020, 362, 805–816. [Google Scholar] [CrossRef]
- Crynack, R.; Truce, R.; Harrison, W. Indigo particle agglomerators reduce mass and visible emissions on coal fired boilers in the US. In Proceedings of the 10th International Conference of Electrostatic Precipitator, Cairns, Australia, 26–30 June 2006. [Google Scholar]
- Truce, R.; Wilkins, J.; Crynack, R.; Harrison, W. Enhanced fine particle collection using the indigo agglomerator. In Proceedings of the 10th International Conference of Electrostatic Precipitator, Cairns, Australia, 26–30 June 2006. [Google Scholar]
- Singh, M.; Singh, R.; Singh, S.; Walker, G.; Matsoukas, T. Discrete finite volume approach for multidimensional agglomeration population balance equation on unstructured grid. Powder Technol. 2020, 376, 229–240. [Google Scholar] [CrossRef]
- Koizumi, Y.; Kawamura, M.; Tochikubo, F.; Watanabe, T. Estimation of the agglomeration coefficient of bipolar-charged aerosol particles. J. Electrost. 2000, 48, 93–101. [Google Scholar] [CrossRef]
- Tan, B.; Wang, L.; Wu, Z. An approximate expression for the coagulation coefficient of bipolarly charged particles in an alternating electric field. J. Aerosol Sci. 2008, 39, 793–800. [Google Scholar] [CrossRef]
- Saffman, P.G.; Turner, J.S. On the collision of drops in turbulent clouds. J. Fluid Mech. 1956, 1, 16–30. [Google Scholar] [CrossRef]
- Higashitani, K.; Yamauchi, K.; Matsuno, Y.; Hosokawa, G. Turbulent coagulation of particles dispersed in a viscous fluid. J. Chem. Eng. Jpn. 1983, 16, 299–304. [Google Scholar] [CrossRef]
- Alves, A.; Paiva, J.; Salcedo, R. Cyclone optimization including particle clustering. Powder Technol. 2015, 272, 14–22. [Google Scholar] [CrossRef]
- Wang, L.K. Advanced Air and Noise Pollution Control; Humana: Totowa, NJ, USA, 2005. [Google Scholar]
- Wang, J.; Huang, W.; Xu, H.; Wang, H.; Ding, Y.; Qu, Z.; Yan, N. Charged movement characteristics and enhanced removal of fine particles under the electric fields coupling with turbulence from industrial flue gas. Fuel 2022, 326, 124977. [Google Scholar] [CrossRef]
Position | Velocity [m/s] | Pressure [Pa] | Condition |
---|---|---|---|
Inlet | 0.1 | Escape | |
Wall | - | - | |
Outlet | Escape |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-S.; Hwang, J. Reduction of Submicron-Sized Aerosols by Aerodynamically Assisted Electrical Attraction with Micron-Sized Aerosols. Appl. Sci. 2024, 14, 10412. https://doi.org/10.3390/app142210412
Choi H-S, Hwang J. Reduction of Submicron-Sized Aerosols by Aerodynamically Assisted Electrical Attraction with Micron-Sized Aerosols. Applied Sciences. 2024; 14(22):10412. https://doi.org/10.3390/app142210412
Chicago/Turabian StyleChoi, Hyun-Sik, and Jungho Hwang. 2024. "Reduction of Submicron-Sized Aerosols by Aerodynamically Assisted Electrical Attraction with Micron-Sized Aerosols" Applied Sciences 14, no. 22: 10412. https://doi.org/10.3390/app142210412
APA StyleChoi, H. -S., & Hwang, J. (2024). Reduction of Submicron-Sized Aerosols by Aerodynamically Assisted Electrical Attraction with Micron-Sized Aerosols. Applied Sciences, 14(22), 10412. https://doi.org/10.3390/app142210412