Effective Uptake of Cadmium and Chromium from Wastewater Using Carbon-Based Capsicum annuum
Abstract
:1. Introduction
2. Materials and Preparation
2.1. Material and Chemicals
2.2. Adsorbents Preparation
2.2.1. Raw Chili Peppers
2.2.2. Preparation of Carbon from Chili Peppers
2.2.3. Activation of Carbon from Chili Peppers
3. Experimentations
3.1. Batch Experiments
3.2. Error Determination
3.3. pH at Point Zero Charge
3.4. Analytical Methods
4. Results
4.1. Characterization
4.1.1. FTIR Analysis
4.1.2. SEM Analysis
4.1.3. Thermal Analysis
4.2. Physicochemical Analysis
4.2.1. Effect of pH at Point Zero Charge
4.2.2. Effect of pH
4.3. Adsorption Data
4.3.1. Initial Concentration Effect of Activated Carbon
4.3.2. Contact Time Effect of Activated Carbon
4.3.3. Temperature Effect of Activated Carbon
4.3.4. Proposed Sorption Mechanism
FTIR Results After Adsorption of Cd(II) and Cr(VI)
XRD Results After Adsorption of Cd(II) and Cr(VI)
SEM Images After Adsorption of Cd(II) and Cr(VI)
Proposed Adsorption Mechanism of Cd(II) and Cr(VI)
4.3.5. Comparative Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Qodah, Z.; Al-Zoubi, H.; Hudaib, B.; Omar, W.; Soleimani, M.; Abu-Romman, S.; Frontistis, Z. Sustainable vs. conventional approach for olive oil wastewater management: A review of the state of the art. Water 2022, 14, 1695. [Google Scholar] [CrossRef]
- Hossini, H.; Shafie, B.; Niri, A.D.; Nazari, M.; Esfahlan, A.J.; Ahmadpour, M.; Nazrama, Z.; Ahmadimanesh, M.; Makhdoumi, P.; Mirzaei, N.; et al. A comprehensive review on human health effects of chromium: Insights on induced toxicity. Environ. Sci. Pollut. Res. Int. 2022, 29, 70686–70705. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Naik, T.S.K.; Chauhan, V.; Shehata, N.; Kaur, H.; Dhanjal, D.S.; Marcelino, L.A.; Bhati, S.; Subramanian, S.; Singh, J.; et al. Ecological effects, remediation, distribution, and sensing techniques of chromium. Chemosphere 2022, 307, 135804. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Naghdali, Z.; Kabdaşlı, I.; Sandoval, M.A.; Titchou, F.E.; Malekdar, F.; Nasr, M.; Martínez-Huitlej, C.A.; Lichtfouse, E.; Emamjomeh, M.M. Reclamation of forward osmosis reject water containing hexavalent chromium via coupled electrochemical-physical processes. Environ. Technol. 2022, 45, 888–901. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Bhati, M.; Sumit, M.; Gupta, V. Removal of Cr(VI) by Prosopis cineraria leaf powder-A green remediation. Indian J. Chem. Technol. 2013, 20, 312–316. [Google Scholar]
- Dou, M.; Zhao, P.; Wang, Y.; Li, G. Health risk assessment of cadmium pollution emergency for urban populations in Foshan City, China. Environ. Sci. Pollut. Res. 2017, 24, 8071–8086. [Google Scholar] [CrossRef]
- Kang, X.; Geng, N.; Li, X.; Yu, J.; Wang, H.; Pan, H.; Yang, Q.; Zhuge, Y.; Lou, Y. Biochar alleviates phytotoxicity by minimizing bioavailability and oxidative stress in foxtail millet (Setaria italica L.) cultivated in Cd- and Zn-contaminated Soil. Front. Plant Sci. 2022, 13, 782963. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Zhang, C.; Sun, Y.C.; Zhang, Q.; Lv, M.W.; Guo, K.; Li, J.L. Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci. Total Environ. 2019, 689, 1160–1171. [Google Scholar] [CrossRef]
- Gao, Z.; Shan, D.; He, J.; Huang, T.; Mao, Y.; Tan, H.; Shi, H.; Li, T.; Xie, T. Effects and mechanism on cadmium adsorption removal by CaCl2-modified biochar from selenium-rich straw. Bioresour. Technol. 2023, 370, 128563. [Google Scholar] [CrossRef]
- Peng, H.; Gao, P.; Chu, G.; Pan, B.; Peng, J.; Xing, B. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified Biochars. Environ. Pollut. 2017, 229, 846–853. [Google Scholar] [CrossRef]
- den Braver-Sewradj, S.P.; van Benthem, J.; Staal, Y.C.M.; Ezendam, J.; Piersma, A.H.; Hessel, E.V.S. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regul. Toxicol. Pharmacol. 2021, 126, 105045. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Huang, S.; Dong, C.; Meng, Z.; Wang, X. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresour. Technol. 2020, 303, 122853. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Xu, G.; Ormeci, B.; Hao, J. Enhanced adsorption of copper and cadmium by magnetic biochar with a high specific surface area prepared from penicillin mycelial dreg via K2FeO4 fabrication. Process Saf. Environ. Prot. 2023, 170, 935–945. [Google Scholar] [CrossRef]
- Awual, M.R. Novel conjugated hybrid material for efficient lead(II) capturing from contaminated wastewater. Mater. Sci. Eng. C 2019, 101, 686–695. [Google Scholar] [CrossRef]
- Awual, M.R.; Miyazaki, M.; Taguchi, T.; Shiwaku, H.; Yaita, T. Encapsulation of cesium from contaminated water with highly selective facial organic-inorganic mesoporous hybrid adsorbent. Chem. Eng. J. 2016, 291, 128–137. [Google Scholar] [CrossRef]
- Bao, S.; Tang, L.; Li, K.; Ning, P.; Peng, J.; Guo, H.; Zhu, T.; Liu, Y. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent. J. Colloid Interface Sci. 2016, 462, 235–242. [Google Scholar] [CrossRef]
- Thabede, P.M.; Khumalo, N.A.H.; Mahlambi, P.N.; Nyamukamba, P.; Modise, S.J. Sorption of Ibuprofen by chemically treated maize cob. S. Afr. J. Chem. Eng. 2023, 46, 376–385. [Google Scholar] [CrossRef]
- Sehar, S.; Hazeem, L.J.; Naz, I.; Rehman, A.; Sun, W.; Alhewairini, S.S.; Thani, A.S.B.; Akhter, M.S.; Younis, A. Facile synthesis of zero valent sulfur nanoparticles for catalytic detoxification of hexavalent chromium, cytotoxicity against microalgae and ultraviolet protection properties. Korean J. Chem. Eng. 2021, 38, 2294. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, I.T.; Park, S.B.; Kim, J.W. Analysis of environmental impact of activated carbon production from wood waste. Environ. Eng. Res. 2019, 24, 117–126. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, R.; Chen, G. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). J. Hazard. Mater. 2020, 387, 121980. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Environ. 2021, 754, 142150. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Li, M.; Hao, H.; Liu, G.; Xu, S.; Chen, J.; Ren, X.; Levendis, Y.A. Effects of activation conditions on the properties of sludge-based activated. ACS Omega 2021, 6, 22020–22032. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, U.R.; Srivastava, C.; Mall, I.D.; Lataye, D.H. Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. J. Environ. Manag. 2009, 90, 710. [Google Scholar] [CrossRef]
- Tuli, F.J.; Hossain, A.; Kibria, F.; Kibria, A.K.M.F.; Tareq, A.R.M.; Mamun, S.M.M.A.; AtiqueUllah, A.K.M. Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100354. [Google Scholar] [CrossRef]
- Mopoung, S.; Namkaew, N.; Srikasaem, S. Properties of activated carbons from sugarcane leaves and rice straw derived charcoals by activation at low temperature via KMnO4 pre-oxidation-hydrolysis. J. Renew. Mater. 2024, 12, 1433. [Google Scholar] [CrossRef]
- Wang, X.; Feng, X.; Ma, Y. Activated carbon from chili straw: K2CO3 activation mechanism, adsorption of dyes, and thermal regeneration. Biomass Convers. Biorefin. 2024, 14, 19563. [Google Scholar] [CrossRef]
- Nkosi, N.E.; Thabede, P.M.; Shooto, N.D. One pot synthesis of Fe3O4-chili carbon composite removing methylene blue, paracetamol and nickel ions from an aqueous solution. Studies Chem. Environ. Eng. 2024, 10, 10080. [Google Scholar]
- Aziz, A.; Hassan, H.; Yahaya, N.K.E.M.; Karim, J.; Ahmad, M.A.; Karim, K.A. Carbonized chilli stalk adsorbent to remove methylene blue dye from aqueous solution: Equilibrium and kinetics studies. IOP Conf. Ser. Earth Environ. Sci. 2021, 765, 012105. [Google Scholar] [CrossRef]
- Koyuncu, F.; Güzel, F.; Inal, I.I. High surface area and supermicroporous activated carbon from capsicum (Capsicum annuum L.) industrial processing pulp via single-step KOH-catalyzed pyrolysis: Production optimization, characterization and its some water pollutants removal and supercapacitor performance. Diam. Relat. Mater. 2022, 124, 108920. [Google Scholar]
- Sajid, M.; Bary, G.; Asim, M.; Ahmad, R.; Ahamad, M.I.; Alotaibi, H.; Rehman, A.; Khan, I.; Guoliang, Y. Synoptic view on Pore beneficiation techniques. Alex. Eng. J. 2022, 61, 3069. [Google Scholar] [CrossRef]
- Palma, J.M.; Teran, F.; Contreras-Ruiz, A.; Rodríguez-Ruiz, M.; Corpas, F.J. Antioxidant profile of pepper (Capsicum annuum L.) fruits containing diverse levels of Capsaicinoids. Antioxidants 2020, 9, 878. [Google Scholar] [CrossRef] [PubMed]
- Yakuth, S.A.; Taqui, S.N.; Syed, U.T.; Akheel Ahmed Syed, A.A. Nutraceutical industrial chillies stalk waste as a new adsorbent for the removal of Acid Violet 49 from water and textile industrial effluent: Adsorption isotherms and kinetic models. Desalination Water Treat. 2019, 155, 94–112. [Google Scholar] [CrossRef]
- Shooto, N.D.; Thabede, P.M. Binary adsorption of chromium and cadmium metal ions by hemp (Cannabis sativa) based adsorbents. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100683. [Google Scholar] [CrossRef]
- Mabalane, K.; Thabede, P.M.; Shooto, N.D. Activated carbon from paper waste as potential adsorbents for methylene blue and hexavalent chromium. Appl. Sci. 2024, 14, 4585. [Google Scholar] [CrossRef]
- Thabede, P.M. Sorption capacity of carbon-based mandarin orange peels for removing methylene blue and Ibuprofen from Water. Appl. Sci. 2023, 13, 10511. [Google Scholar] [CrossRef]
- Demirbas, E.; Kobya, M.; Konukman, A.E.S. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. J. Hazard. Mater. 2008, 154, 787. [Google Scholar] [CrossRef]
- Dirbaz, M.; Roosta, A. Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Para-chlorella sp. J. Environ. Chem. Eng. 2018, 6, 2302. [Google Scholar] [CrossRef]
- Jawad, A.H.; Ngoh, Y.S.; Radzu, K.A. Utilization of watermelon (Citrullus lanatus) rinds as a natural low-cost biosorbent for adsorption of methylene blue: Kinetic, equilibrium and thermodynamic studies. J. Taibah Univ. Sci. 2018, 12, 371–381. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of pollutants from wastewater by biochar: A Review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G. A mini review of the morphological properties of biosorbents derived from plant leaves. Springer Nat. Appl. Sci. 2020, 2, 509. [Google Scholar] [CrossRef]
- Simonovska, J.; Škerget, M.; Knez, Z.; Srbinoska, M.; Kavrakovski, Z.; Grozdanov, A.; Rafajlovska, V. Physicochemical characterization and bioactive compounds of stalk from hot fruits of Capsicum annuum. Maced. J. Chem. Eng. 2016, 35, 199–208. [Google Scholar] [CrossRef]
- Parka, S.; Kim, S.J.; Oh, K.C.; Cho, L.; Jeon, Y.-K.; Lee, C.; Kim, D.-H. Thermogravimetric analysis-based proximate analysis of agro-byproducts and prediction of calorific value. Energy Rep. 2022, 8, 12038–12044. [Google Scholar] [CrossRef]
- Guilhen, S.N.; Watanabe, T.; Silva, T.T.; Rovani, S.; Marumo, J.T.; Tenório, J.A.S.; Mašek, O.; de Araujo, L.G. Role of point of zero charge in the adsorption of cationic textile dye on standard biochars from aqueous solutions: Selection criteria and performance assessment. Recent Prog. Mater. 2022, 4, 1–30. [Google Scholar] [CrossRef]
- Cozmuta, L.M.; Cozmuta, A.M.; Peter, A.; Nicula, C.; Nsimba, E.B.; Tutu, H. The influence of pH on the adsorption of lead by Na-clinoptilolite: Kinetic and equilibrium studies. Water 2012, 38, 269–278. [Google Scholar] [CrossRef]
- Sulistiyo, C.D.; Cheng, K.-C.; Su’andi, H.J.; Yuliana, M.; Hsieh, C.-W.; Ismadji, S.; Angkawijaya, A.E.; Go, A.W.; Hsu, H.Y.; Tran-Nguyen, P.L.; et al. Removal of hexavalent chromium using durian in the form of rind, cellulose, and activated carbon: Comparison on adsorption performance and economic evaluation. J. Clean. Prod. 2022, 380, 135010. [Google Scholar] [CrossRef]
- Mabalane, K.; Shooto, N.D.; Thabede, P.M. A novel permanganate and peroxide carbon-based avocado seed waste for the adsorption of manganese and chromium ions from water. Case Stud. Chem. Environ. Eng. 2024, 10, 100782. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Mu, C.; Zhou, J.; Shi, B. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles. Chemosphere 2019, 229, 570–579. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Iqbal, J.; Islam, M.D.; Islam, A.; Khandaker, S.; Asiri, A.M.; Rahman, M.M. Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media. J. Environ. Chem. Eng. 2020, 8, 103591. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alamry, K.A.; Awual, M.R.; Mekky, A.E.M. Efficient Hg(II) ionic probe development based on one-step synthesized diethyl thieno[2,3-b]thiophene-2,5-dicarboxylate (DETTDC2) onto glassy carbon electrode. Microchem. J. 2020, 152, 104291. [Google Scholar] [CrossRef]
- Hasan, M.M.; Kubra, K.T.; Hasan, M.N.; Awual, M.E.; Salman, M.S.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Islam, M.S.; et al. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. J. Mol. Liq. 2023, 371, 121125. [Google Scholar] [CrossRef]
- Mphuthi, B.R.; Thabede, P.M.; Modise, J.S.; Xaba, T.; Shooto, N.D. Adsorption of cadmium and methylene blue using highly porous carbon from hemp seeds. Appl. Sci. 2023, 13, 9659. [Google Scholar] [CrossRef]
- Sheikh, M.C.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Kubra, K.T.; Awual, M.E.; Waliullah, R.M.; Rasee, A.I.; Rehan, A.I.; Hossain, M.S.; et al. Toxic cadmium(II) monitoring and removal from aqueous solution using ligand-based facial composite adsorbent. J. Mol. Liq. 2023, 389, 122854. [Google Scholar] [CrossRef]
- Nkosi, N.; Shooto, N.D.; Nyamukamba, P.; Thabede, P.M. Binary adsorption of toxic nickel(II) and cadmium(II) ions from aqueous solution by acid modified chilli peppers. Energy Nexus 2024, 15, 100313. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M. Fine-tuning mesoporous adsorbent for simultaneous ultra-trace palladium(II) detection, separation and recovery. J. Ind. Eng. Chem. 2015, 21, 507–515. [Google Scholar] [CrossRef]
- Nassef, H.M.; Al-Hazmi, G.A.A.M.; Alayyafi, A.A.; El-Desouky, M.G.; El-Binda, A.A. Synthesis and characterization of new composite sponge combining of metal-organic framework and chitosan for the elimination of Pb(II), Cu(II) and Cd(II) ions from aqueous solutions: Batch adsorption and optimization using Box-Behnken design. J. Mol. Liq. 2024, 394, 123741. [Google Scholar] [CrossRef]
- Pawlaczyk, M.; Schroeder, G. Adsorption studies of Cu(II) ions on dendrimer-grafted silica-based materials. J. Mol. Liq. 2019, 281, 176–185. [Google Scholar] [CrossRef]
- Wang, W.; Liua, Y.; Songa, S.; Cai, W. Facile pyrolysis of fishbone charcoal with remarkable adsorption performance towards aqueous Pb(II). J. Environ. Chem. Eng. 2017, 5, 4621–4629. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A Review. Adsorption rates review. BioResources 2019, 14, 7582. [Google Scholar] [CrossRef]
- Thabede, P.M. The adsorption of Ibuprofen from aqueous solution using acid treated maize cob. Case Stud. Chem. Environ. Eng. 2024, 9, 100718. [Google Scholar] [CrossRef]
- Bassareh, H.; Karamzadeh, M.; Movahedirad, S. Synthesis and characterization of cost-effective and high-efficiency biochar for the adsorption of Pb2+ from wastewater. Sci. Rep. 2023, 13, 15608. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Pavithra, S.N.; Samuel, J.; Subramanian, S.; Singh, J.; Ramamurthy, P.C. Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: A review on mechanism, kinetics, valorization and circular economy. J. Environ. Manag. 2021, 300, 113569. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Cheng, Y.; Ma, C.; Li, Z.; Mao, R.; Niu, Y. Adsorption performance of sulfur-decorated polyamidoamine dendrimers/silica for Ag(I) and Cu(II). J. Mol. Liq. 2024, 403, 124858. [Google Scholar] [CrossRef]
- Thabede, P.M.; Shooto, N.D.; Xaba, T.; Naidoo, E.B. Sulfuric activated carbon of black cumin (Nigella sativa L.) seeds for the removal of cadmium(II) and methylene blue dye. Asian J. Chem. 2020, 32, 1361–1369. [Google Scholar] [CrossRef]
- Thabede, P.M.; Shooto, N.D.; Xaba, T.; Naidoo, E.B. Magnetite functionalized Nigella sativa seeds for the uptake of chromium(VI) and lead(II) ions from synthetic wastewater. Adsorpt. Sci. Technol. 2021, 2021, 6655227. [Google Scholar] [CrossRef]
- Rani, S.; Sud, D. Effect of temperature on adsorption-desorption behaviour of triazophos in Indian soils. Plant Soil Environ. 2015, 61, 36–42. [Google Scholar] [CrossRef]
- Mphuthi, B.R.; Thabede, P.M.; Monapathi, M.E.; Shooto, N.D. Hemp seed nanoparticle composites for removing lead, methylene blue, and ibuprofen from an aqueous solution and their antimicrobial towards Escherichia coli and Staphylococcus aureus. Case Stud. Chem. Environ. Eng. 2023, 8, 100436. [Google Scholar] [CrossRef]
- Song, Z.; Lian, F.; Yu, Z.; Zhu, L.; Xing, B.; Qiu, W. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem. Eng. J. 2014, 242, 36–42. [Google Scholar] [CrossRef]
- Ocampo-Perez, R.; Padilla-Ortega, E.; Medellin-Castillo, N.A.; Coronado-Oyarvide, P.; Aguilar-Madera, C.G.; Segovia-Sandoval, S.J.; Flores-Ramírez, R.; Parra-Marfil, A. Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modelling. Sci. Total Environ. 2019, 655, 1397–1408. [Google Scholar] [CrossRef]
- Forgionny, A.; Acelas, N.Y.; Ocampo-Pérez, R.; Padilla-Ortega, E.; Leyva-Ramos, R.; Flórez, E. Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: A combined experimental and computational study. Environ. Sci. Pollut. Res. 2021, 28, 23204–23219. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.; Shaban, M.; Zaki, S.K.; Abd-Elsamie, M.S.; Sayed, R.; Zayed, M.; Khalid, N.; Saad, S.; Omar, S.; Ahmed, A.M.; et al. Activated carbon derived from sugarcane and modified with natural zeolite for efficient adsorption of methylene blue dye: Experimentally and theoretically approaches. Sci. Rep. 2022, 2, 18031. [Google Scholar] [CrossRef] [PubMed]
- Husseien, M.; Amer, A.A.; El-Maghraby, A.; Hamedallah, N. A comprehensive characterization of corn stalk and study of carbonized corn stalk in dye and gas oil sorption. J. Anal. Appl. Pyrolysis 2009, 86, 360. [Google Scholar] [CrossRef]
- Valadi, F.M.; Shahsavari, S.; Akbarzadeh, E.; Gholami, M.R. Preparation of new MOF-808/chitosan composite for Cr(VI) adsorption from aqueous solution: Experimental and DFT study. Carbohydr. Polym. 2022, 288, 119383. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, J.; Tan, Z. Adsorption effect and the removal mechanism of silicate composite biochar particles on cadmium in soil. Chemosphere 2022, 303, 134970. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, P.; Liu, C.; He, J.; Jiang, W. Separation of high concentration V(V) and Cr(VI) by amorphous hydrous zirconium oxide with high adsorption capacity and selectivity. Sep. Purif. Technol. 2025, 354, 128562. [Google Scholar] [CrossRef]
- Rekha, A.; Srinivasan, L.; Pavithra, S.; Gomathi, T.; Sudha, P.N.; Lavanya, G.; Arumugam, N.; Vidhya, A. Biosorption efficacy studies of Sargassum wightii and its biochar on the removal of chromium from aqueous solution. J. Taiwan Inst. Chem. Eng. 2023, 105241. [Google Scholar] [CrossRef]
- Li, W.; Yuan, H.; Wang, P.; Zhai, S.; Ma, J.; Wang, Y.; Xiao, J.; Shen, Y.; Guo, H. Amidoxime-functionalized corn straw for efficient Cr(VI) adsorption from water: Waste utilization, affinity character and DFT simulation. Coll. Surf. A Physicochem. Eng. Asp. 2024, 689, 133631. [Google Scholar] [CrossRef]
- Chanda, R.K.; Jahid, T.; Hassan, M.N.; Yeasmin, T.; Biswas, B.K. Cauliflower stem-derived biochar for effective adsorption and reduction of hexavalent chromium in synthetic wastewater: A sustainable approach. Environ. Adv. 2024, 15, 100458. [Google Scholar] [CrossRef]
- Yusuff, A.S.; Popoola, L.T.; Igbafe, A.I. Response surface modeling and optimization of hexavalent chromium adsorption onto eucalyptus tree bark-derived pristine and chemically modified biochar. Chem. Eng. Res. Des. 2022, 182, 592–603. [Google Scholar] [CrossRef]
- Dahiya, A.; Bhardwaj, A.; Rani, A.; Arora, M.; Babu, J.N. Reduced and oxidized rice straw biochar for hexavalent chromium adsorption: Revisiting the mechanism of adsorption. Heliyon 2023, 9, e21735. [Google Scholar] [CrossRef] [PubMed]
- Abewaa, M.; Arka, A.; Haddis, T.; Mengistu, A.; Takele, T.; Adino, E.; Abay, Y.; Bekele, N.; Andualem, G.; Girmay, H. Hexavalent chromium adsorption from aqueous solution utilizing activated carbon developed from Rumex abyssinicus. Results Eng. 2024, 22, 102274. [Google Scholar] [CrossRef]
- Sinha, R.; Kumar, R.; Abhishek, K.; Shang, J.; Bhattacharya, S.; Sengupta, S.; Kumar, N.; Singh, R.K.; Mallick, J.; Karf, M.; et al. Single-step synthesis of activated magnetic biochar derived from rice husk for hexavalent chromium adsorption: Equilibrium mechanism, kinetics, and thermodynamics analysis. Groundw. Sustain. Dev. 2022, 18, 100796. [Google Scholar] [CrossRef]
- Zhang, N.; Reguyal, F.; Sarmah, A.K. Effect of iron nanoparticles on chromium adsorption in aqueous solution using magnetic biochar: A site energy distribution analysis. Environ. Pollut. 2024, 346, 123593. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhou, Z.; Xu, S.; Wang, H.; Lu, W. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol. 2015, 190, 388–394. [Google Scholar] [CrossRef]
- Xiang, J.; Lin, Q.; Yao, X.; Yin, G. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environ. Res. 2021, 195, 110650. [Google Scholar] [CrossRef]
- Kang, X.; Geng, N.; Li, Y.; Li, X.; Yu, J.; Gao, S.; Wang, H.; Pan, H.; Yang, Q.; Zhuge, Y.; et al. Treatment of cadmium and zinc-contaminated water systems using modified biochar: Contaminant uptake, adsorption ability, and mechanism. Bioresour. Technol. 2022, 363, 127817. [Google Scholar] [CrossRef]
- Chang, R.; Sohi, S.P.; Jing, F.; Liu, Y.; Chen, J. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation. Environ. Pollut. 2019, 254 Pt B, 113123. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Ma, J.; Xia, P.; Zhao, J. Removal of cadmium (II) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater. J. Hazard. Mater. 2017, 329, 66–76. [Google Scholar] [CrossRef]
- Roh, H.; Yu, M.R.; Yakkala, K.; Koduru, J.R.; Yang, J.K.; Chang, Y.Y. Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads. J. Ind. Eng. Chem. 2015, 26, 226–233. [Google Scholar] [CrossRef]
- Zhao, N.N.; Li, B.; Huang, H.; Lv, X.; Zhang, M.; Cao, L. Modification of kelp and sludge biochar by TMT-102 and NaOH for cadmium adsorption. J. Taiwan Inst. Chem. Eng. 2020, 116, 101–111. [Google Scholar] [CrossRef]
Adsorption Models | Parameters | Pollutants | |
---|---|---|---|
Cd(II) | Cr(VI) | ||
Langmuir | Qo (mg/g) | 24.92 | 12.94 |
B (L/mol) | 0.324 | 0.213 | |
R2 | 0.846 | 0.890 | |
RMSE | 12.87 | 6.42 | |
MPSD | 27.43 | 15.09 | |
Freundlich | KF | 1.121 | 1.050 |
N | 1.563 | 1.414 | |
R2 | 0.972 | 0.985 | |
RMSE | 9.42 | 6.42 | |
MPSD | 4.42 | 3.58 | |
Experimental | qe (mg/g) | 34.34 | 15.24 |
Kinetic Models | Parameters | Pollutants | |
---|---|---|---|
Cd(II) | Cr(VI) | ||
PFO | qe (mg/g) | 32.46 | 26.40 |
K1 (min−1) | 0.078 | 0.074 | |
R2 | 0.988 | 0.965 | |
PSO | qe (mg/g) | 19.25 | 20.09 |
K2 (g·mg/min) | 1.004 | 1.006 | |
R2 | 0.877 | 0.824 | |
IPD | C (mg/g) | 6.246 | 4.234 |
Ki (g/g·min1/2) | 0.057 | 0.067 | |
R2 | 0.845 | 0.811 | |
Experimental | qe (mg/g) | 33.14 | 27.48 |
Parameters | Pollutants | |
---|---|---|
Cd(II) | Cr(VI) | |
∆H° (KJ mol−1) | −2.15 | −3.23 |
∆S° (KJ mol−1K−1) | 0.0567 | 0.0245 |
∆G° (KJ mol−1) 298 K | −5.91 | −7.93 |
308 K | −4.24 | −4.31 |
318 K | −3.74 | −4.21 |
328 K | −2.53 | −1.56 |
338 K | −1.90 | −1.13 |
Adsorbents | q(max) (mg/g) | References |
---|---|---|
Cr(VI) | ||
Cauliflower stem | 64.10 | [79] |
Capsicum annuum | 34.34 | This study |
Eucalyptus tree bark | 30.6 | [80] |
Rice straw | 17.47 | [81] |
Rumex abyssinicus | 19.35 | [82] |
Rice husk | 9.97 | [83] |
White tea residue | 9.11 | [84] |
Sludge | 7.00 | [85] |
Adsorbents | q(max) (mg/g) | References |
Cd(II) | ||
Rice husk | 28.96 | [86] |
Capsicum annuum | 15.24 | This study |
Rice straw | 14.97 | [13] |
Corn straw | 12.40 | [87] |
Corn stalk | 12.10 | [88] |
Attapulgite | 10.38 | [89] |
Buffalo weed | 9.70 | [90] |
Sewage sludge | 0.87 | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thabede, P.M.; Nkosi, N.E.; Shooto, N.D. Effective Uptake of Cadmium and Chromium from Wastewater Using Carbon-Based Capsicum annuum. Appl. Sci. 2024, 14, 10422. https://doi.org/10.3390/app142210422
Thabede PM, Nkosi NE, Shooto ND. Effective Uptake of Cadmium and Chromium from Wastewater Using Carbon-Based Capsicum annuum. Applied Sciences. 2024; 14(22):10422. https://doi.org/10.3390/app142210422
Chicago/Turabian StyleThabede, Patience Mapule, Nkululeko Excellent Nkosi, and Ntaote David Shooto. 2024. "Effective Uptake of Cadmium and Chromium from Wastewater Using Carbon-Based Capsicum annuum" Applied Sciences 14, no. 22: 10422. https://doi.org/10.3390/app142210422
APA StyleThabede, P. M., Nkosi, N. E., & Shooto, N. D. (2024). Effective Uptake of Cadmium and Chromium from Wastewater Using Carbon-Based Capsicum annuum. Applied Sciences, 14(22), 10422. https://doi.org/10.3390/app142210422