The Application of Mulberry Elements into a Novel Form of Easy-to-Prepare Dried Smoothie
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Designing Process
- The ratio between licorice and mulberry leaf extract amounts;
- The color of the smoothie (presence of dragon fruit or beetroot);
- Consistency (presence or absence of chia seeds).
2.2.2. Preparation of Four Variants of Fresh Smoothies
2.2.3. Sensory Evaluation for Fresh, Dried, and Reconstructed Smoothies
2.2.4. Basic Composition, Basic Characteristics of Fresh, Dried Smoothies
2.2.5. Freeze-Drying (Lyophilization) of the Fresh Smoothie to Obtain the Final Convenient Smoothie in Dried Form
2.2.6. Antioxidant Activity and Bioactive Compound Content
2.2.7. Statistical Analysis
2.3. Reagents
3. Results and Discussion
3.1. Smoothie Characteristics
3.2. Antioxidant Activity of Smoothies
3.3. Sensory Analysis of Smoothies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Roberfroid, M.B. A European Consensus of Scientific Concepts of Functional Foods. Nutrition 2000, 16, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.T.; Balthazar, C.F.; Silva, R.; Rocha, R.S.; Graça, J.S.; Esmerino, E.A.; Silva, M.C.; Sant’Ana, A.S.; Duarte, M.C.K.H.; Freitas, M.Q.; et al. Impact of Probiotics and Prebiotics on Food Texture. Curr. Opin. Food Sci. 2020, 33, 38–44. [Google Scholar] [CrossRef]
- Tuso, P. Prediabetes and Lifestyle Modification: Time to Prevent a Preventable Disease. Perm. J. 2014, 18, 88. [Google Scholar] [CrossRef]
- Przeor, M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals 2022, 15, 3390. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Liu, J.; Li, M.; Lu, J.; Zhou, J.; Zhang, M.; Ferri, N.; Chen, H. Mulberry Leaf and Its Effects against Obesity: A Systematic Review of Phytochemistry, Molecular Mechanisms and Applications. Phytomedicine 2024, 128, 155528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Yan, J.; Qi, X.; Wang, Y.; Zheng, Z.; Liang, J.; Ling, J.; Chen, Y.; Tang, X.; et al. Application of Fermented Chinese Herbal Medicines in Food and Medicine Field: From an Antioxidant Perspective. Trends Food Sci. Technol. 2024, 148, 104410. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, X.; Jiang, X.; Kong, F.; Wang, S.; Yan, C. Antidiabetic Effects of Morus Alba Fruit Polysaccharides on High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes in Rats. J. Ethnopharmacol. 2017, 199, 119–127. [Google Scholar] [CrossRef]
- Huo, J.; Ni, Y.; Li, D.; Qiao, J.; Huang, D.; Sui, X.; Zhang, Y. Comprehensive Structural Analysis of Polyphenols and Their Enzymatic Inhibition Activities and Antioxidant Capacity of Black Mulberry (Morus nigra L.). Food Chem. 2023, 427, 136605. [Google Scholar] [CrossRef] [PubMed]
- Said, E.M.; Soliman, H.H.; Emara, M.H.; Zaher, T.I.; Elobatae, H.E.; Abdel-Razik, A.; Tawfik, S.; Elnadry, M. Nutritional Value and Health Implications of Traditional Foods and Drinks Consumed during Ramadan : A Narrative Review. Prog. Nutr. 2022, 24, e2022025. [Google Scholar] [CrossRef]
- McCartney, D.; Rattray, M.; Desbrow, B.; Khalesi, S.; Irwin, C. Smoothies : Exploring the Attitudes, Beliefs and Behaviours of Consumers and Non-Consumers. Curr. Res. Nutr. Food Sci. 2018, 6, 425–436. [Google Scholar] [CrossRef]
- Rollins, B.Y.; Stein, W.; Keller, K.L.; Savage, J.S. Preschoolers Will Drink Their GREENS! Children Accept, like, and Drink Novel Smoothies Containing Dark Green Vegetables (DGVs). Appetite 2021, 162, 105148. [Google Scholar] [CrossRef] [PubMed]
- GVR Report Cover Smoothies Market Size, Share & Trends Analysis Report by Product (Fruit-Based, Dairy-Based), by Distribution Channel (Restaurants, Smoothie Bars, Supermarkets & Convenience Stores), by Region, and Segment Forecasts, 2024–2030; HORIZON: San Francisco, CA, USA, 2022; Available online: https://www.grandviewresearch.com/industry-analysis/smoothies-market-report (accessed on 5 August 2024).
- Kidoń, M.; Uwineza, P.A. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules 2022, 27, 3049. [Google Scholar] [CrossRef] [PubMed]
- Issa-Issa, H.; Cano-Lamadrid, M.; Calín-Sánchez, Á.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Volatile Composition and Sensory Attributes of Smoothies Based on Pomegranate Juice and Mediterranean Fruit Purées (Fig, Jujube and Quince). Foods 2020, 9, 926. [Google Scholar] [CrossRef] [PubMed]
- Mongkolsucharitkul, P.; Pinsawas, B.; Surawit, A.; Pongkunakorn, T.; Manosan, T.; Ophakas, S.; Suta, S.; Pumeiam, S.; Mayurasakorn, K. Diabetes-Specific Complete Smoothie Formulas Improve Postprandial Glycemic Response in Obese Type 2 Diabetic Individuals: A Randomized Crossover Trial. Nutrients 2024, 16, 395. [Google Scholar] [CrossRef]
- Gil, K.A.; Wojdyło, A.; Nowicka, P.; Montoro, P.; Tuberoso, C.I.G. Effect of Apple Juice Enrichment with Selected Plant Materials: Focus on Bioactive Compounds and Antioxidant Activity. Foods 2023, 12, 105. [Google Scholar] [CrossRef]
- Napiórkowska, A.; Khaneghah, A.M.; Kurek, M.A. Essential Oil Nanoemulsions—A New Strategy to Extend the Shelf Life of Smoothies. Foods 2024, 13, 1854. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Shelf Life and Sensory Attributes of a Fruit Smoothie-Type Beverage Processed with Moderate Heat and Pulsed Electric Fields. LWT Food Sci. Technol. 2010, 43, 1067–1073. [Google Scholar] [CrossRef]
- Donda Zbinden, M.; Schmidt, M.; Vignatti, C.I.; Pirovani, M.É.; Böhm, V. High-Pressure Processing of Fruit Smoothies Enriched with Dietary Fiber from Carrot Discards: Effects on the Contents and Bioaccessibilities of Carotenoids and Vitamin E. Molecules 2024, 29, 1259. [Google Scholar] [CrossRef]
- Da Silva-Mojón, L.; Pérez-Lamela, C.; Falqué-López, E. Smoothies Marketed in Spain: Are They Complying with Labeling Legislation? Nutrients 2023, 15, 4426. [Google Scholar] [CrossRef]
- Kwaśniewska-Karolak, I.; Mostowski, R. Effect of Different Drying Processes on an Antioxidant Potential of Three Species of the Lamiaceae Family. Herba Pol. 2021, 67, 8–17. [Google Scholar] [CrossRef]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensoryczne Badania Żywności; Wydawnictwo Naukowe PTTŻ: Warszawa, Poland, 2009; ISBN 978-83-924646-9-3. [Google Scholar]
- AOAC Official Methods of Analysis 2000; AOAC International: Rockville, MD, USA, 2000.
- Pijanowski, E.; Mrożewski, S.; Horubała, A.; Jarczyk, A. Technologia Produktów Owocowych i Warzywnych; PWRiL: Warsaw, Poland, 1973. [Google Scholar]
- EUR-Lex Regulation—1169/2011—EN—Food Information to Consumers Regulation—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R1169 (accessed on 15 March 2024).
- Przeor, M.; Flaczyk, E. Antioxidant Properties of Paratha Type Flat Bread Enriched with White Mulberry Leaf Extract. Indian J. Tradit. Knowl. 2016, 15, 237–244. [Google Scholar]
- Telichowska, A.; Kobus-Cisowska, J.; Szulc, P.; Ligaj, M.; Stuper-Szablewska, K.; Szwajgier, D.; Bujak, H. Comparative Analysis of Infusions with the Addition P. Padus Bark: Assessment of the Antioxidant Potential and Their Inhibitory Effect on Enzymes Associated with Oxidative Stress. Sustainability 2021, 13, 3913. [Google Scholar] [CrossRef]
- Przybylska-Balcerek, A.; Szablewski, T.; Szwajkowska-Michałek, L.; Świerk, D.; Cegielska-Radziejewska, R.; Krejpcio, Z.; Suchowilska, E.; Tomczyk, Ł.; Stuper-Szablewska, K. Sambucus Nigra Extracts–Natural Antioxidants and Antimicrobial Compounds. Molecules 2021, 26, 2910. [Google Scholar] [CrossRef] [PubMed]
- Przeor, M.; Flaczyk, E.; Kmiecik, D.; Buchowski, M.S.; Staniek, H.; Tomczak-Graczyk, A.; Kobus-Cisowska, J.; Gramza-Michałowska, A.; Foksowicz-Flaczyk, J. Functional Properties and Antioxidant Activity of Morus Alba L. Leaves Var. Zolwinska Wielkolistna (WML-P)—The Effect of Controlled Conditioning Process. Antioxidants 2020, 9, 668. [Google Scholar] [CrossRef]
- Fatima, M.; Dar, M.A.; Dhanavade, M.J.; Abbas, S.Z.; Bukhari, M.N.; Arsalan, A.; Liao, Y.; Wan, J.; Shah, J.; Bukhari, S.; et al. Biosynthesis and Pharmacological Activities of the Bioactive Compounds of White Mulberry (Morus alba): Current Paradigms and Future Challenges. Biology 2024, 13, 506. [Google Scholar] [CrossRef]
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere, F.; Venter, A.C.; Vicas, S.I. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef]
- Ahmad, R.; Alqathama, A.; Aldholmi, M.; Riaz, M.; Mukhtar, M.H.; Aljishi, F.; Althomali, E.; Alamer, M.A.; Alsulaiman, M.; Ayashy, A.; et al. Biological Screening of Glycyrrhiza Glabra L. from Different Origins for Antidiabetic and Anticancer Activity. Pharmaceuticals 2023, 16, 7. [Google Scholar] [CrossRef]
- Kataya, H.H.; Hamza, A.A.; Ramadan, G.A.; Khasawneh, M.A. Effect of Licorice Extract on the Complications of Diabetes Nephropathy in Rats. Drug Chem. Toxicol. 2011, 34, 101–108. [Google Scholar] [CrossRef]
- Domínguez, I.; Romero, I.; Teresa Sanchez-Ballesta, M.; Isabel Escribano, M.; Merodio, C.; Doménech-Carbó, A. Electrochemistry of Lyophilized Blueberry and Raspberry Samples: ROS Activation of the Antioxidant Ability of Anthocyanins. Food Chem. 2024, 435, 137649. [Google Scholar] [CrossRef]
- Bayram, H.M.; Ozkan, K.; Ozturkcan, A.; Sagdic, O.; Gunes, E.; Karadag, A. Effect of Drying Methods on Free and Bound Phenolic Compounds, Antioxidant Capacities, and Bioaccessibility of Cornelian Cherry. Eur. Food Res. Technol. 2024, 250, 2461–2478. [Google Scholar] [CrossRef]
- Waszkiewicz, M.; Sokół-Łętowska, A.; Pałczyńska, A.; Kucharska, A.Z. Fruit Smoothies Enriched in a Honeysuckle Berry Extract—An Innovative Product with Health-Promoting Properties. Foods 2023, 12, 3667. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.P.; de Lima, M.D.C.; da Silva, J.G.; Peixoto Araujo, N.M. Nutritional Composition, Phenolic Compounds and Biological Activities of Selected Unconventional Food Plants. Food Res. Int. 2024, 191, 114643. [Google Scholar] [CrossRef] [PubMed]
- Morales Ramos, J.G.; Esteves Pairazamán, A.T.; Mocarro Willis, M.E.S.; Collantes Santisteban, S.; Caldas Herrera, E. Medicinal Properties of Morus Alba for the Control of Type 2 Diabetes Mellitus: A Systematic Review. F1000Research 2021, 10, 1022. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, Z.; Cao, X.; Wei, Y.; Zhang, W.W.Q.; Zhao, M.; Duan, J.A. Pharmacokinetic Study of Rutin and Quercetin in Rats after Oral Administration of Total Flavones of Mulberry Leaf Extract. Braz. J. Pharmacogn. 2013, 23, 776–782. [Google Scholar] [CrossRef]
- Altaf, L.; Wani, S.A.; Hussain, P.R.; Suradkar, P.; Baqual, M.F.; Bhat, A.A. Bioactive Compounds and Antioxidant Activity in Various Parts of Morus Alba L. Cv. Ichinose: A Comparative Analysis. Discov. Life 2024, 54, 7. [Google Scholar] [CrossRef]
- AL-Hmadi, H.B.; Majdoub, S.; El Mokni, R.; Angeloni, S.; Mustafa, A.M.; Caprioli, G.; Zengin, G.; Maggi, F.; Hammami, S. Metabolite Profiling, Enzyme Inhibitory Activity and Antioxidant Potential of Different Extracts from Glycyrrhiza Foetida Desf. (Fabaceae, Galegeae, Glycyrrhizinae). Fitoterapia 2024, 173, 105792. [Google Scholar] [CrossRef]
- Ling, X.; Hu, Y.; Hu, Y.; Meng, J. Analysis of Chlorogenic Acid and Two Flavonoids in Mulberry Leaves of Different Harvest Periods and Origins and HPLC Fingerprint Study for Quality Control. J. Food Compos. Anal. 2024, 132, 106284. [Google Scholar] [CrossRef]
- Khalifa, I.; Zhu, W.; Li, K.K.; Li, C. mei Polyphenols of Mulberry Fruits as Multifaceted Compounds: Compositions, Metabolism, Health Benefits, and Stability—A Structural Review. J. Funct. Foods 2018, 40, 28–43. [Google Scholar] [CrossRef]
- Kim, Y.; Goodner, K.L.; Park, J.D.; Choi, J.; Talcott, S.T. Changes in Antioxidant Phytochemicals and Volatile Composition of Camellia Sinensis by Oxidation during Tea Fermentation. Food Chem. 2011, 129, 1331–1342. [Google Scholar] [CrossRef]
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.D.G. Identification and Quantification of Phenolic Acids and Flavonol Glycosides in Tunisian Morus Species by HPLC-DAD and HPLC-MS. J. Funct. Foods 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Ren, X.; Guo, Q.; Jiang, H.; Han, X.; He, X.; Liu, H.; Xiu, Z.; Dong, Y. Combinational Application of the Natural Products 1-Deoxynojirimycin and Morin Ameliorates Insulin Resistance and Lipid Accumulation in Prediabetic Mice. Phytomedicine 2023, 121, 155106. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Prymont-Przymińska, A.; Zwolińska, A.; Sarniak, A.; Włodarczyk, A.; Król, M.; Nowak, M.; de Graft-Johnson, J.; Padula, G.; Białasiewicz, P.; Markowski, J.; et al. Consumption of Strawberries on a Daily Basis Increases the Non-Urate 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) Radical Scavenging Activity of Fasting Plasma in Healthy Subjects. J. Clin. Biochem. Nutr. 2014, 55, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Price, J. Impact of Fruit Smoothies on Adolescent Fruit Consumption at School. Health Educ. Behav. 2015, 42, 487–492. [Google Scholar] [CrossRef]
- Schmid, C.; Brockhoff, A.; Shoshan-Galeczki, Y.B.; Kranz, M.; Stark, T.D.; Erkaya, R.; Meyerhof, W.; Niv, M.Y.; Dawid, C.; Hofmann, T. Comprehensive Structure-Activity-Relationship Studies of Sensory Active Compounds in Licorice (Glycyrrhiza glabra). Food Chem. 2021, 364, 130420. [Google Scholar] [CrossRef]
- Obuchowski, W.; Szwengiel, A.; Kobus-Cisowska, J.; Kmiecik, D.; Łuczak, A. Opracowanie Technologii Produkcji Chleba Chrupkiego z Pszenżyta, Jako Nośnika Substancji Bioaktywnych. Inżynieria Przetwórstwa Spożywczego 2015, 2, 24–30. [Google Scholar]
- Kobus-Cisowska, J.; Gramza-Michalowska, A.; Kmiecik, D.; Flaczyk, E.; Korczak, J. Mulberry Fruit as an Antioxidant Component in Muesli. Agric. Sci. 2013, 4, 130–135. [Google Scholar] [CrossRef]
- Zhang, Z.A.; Xun, X.M.; Herman, R.A.; Zhang, Z.P.; Yan, C.H.; Gong, L.C.; Wang, J. Mulberry (Morus alba L.) Leaf Powder Modified the Processing of Meat Alternatives: Principal Component Analysis from Apparent Properties to Chemical Bonds. Food Chem. 2024, 450, 139318. [Google Scholar] [CrossRef]
- Levickienė, D.; Kulaitienė, J.; Vaitkevičienė, N.; Rakauskaitė, L. Influence of Mulberry Leaf Powder Additive on Chemical and Physical Characteristics of Wheat and Rice Flour Butter Cookies. Foods 2024, 13, 1737. [Google Scholar] [CrossRef]
- Przeor, M.; Kobus-Cisowska, J.; Kmiecik, D.; Szczepaniak, O.; Beszterda, M. Sposób Wytwarzania Chleba Mieszanego z Leżakowanymi Liśćmi Morwy Białej, w Szczególności Dla Diabetyków. Patent for Invention, Poland, Pat. 242304, 27 October 2020. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.432706 (accessed on 8 November 2024).
DB1 | DB2 | DC1 | DC2 | |
---|---|---|---|---|
Bananas [g] | 90.0 | 90.0 | 90.0 | 90.0 |
Strawberries [g] | 40.5 | 40.5 | 40.0 | 40.0 |
Licorice root extract (LE) [mL] | 0.125 | 0.125 | 0.225 | 0.225 |
White mulberry leaf extract (capsule) (ME) [g] | 0.125 | 0.125 | 0.700 | 0.700 |
Black mulberry [g] | 7.0 | 7.0 | 7.0 | 7.0 |
Dragon fruit powder [g] | 3.0 | 3.0 | 3.0 | 3.0 |
Liquid-DW [mL] | 150.0 | 150.0 | 150.0 | 150.0 |
Chia seeds (CS) [g] | 8.0 | 0.0 | 8.0 | 0.0 |
Lucuma [g] | 5.0 | 5.0 | 5.0 | 5.0 |
DB1 | DB2 | DC1 | DC2 | |
---|---|---|---|---|
Ratio ME:LE:CS [g] | 0.125:0.125:8 | 0.125:0.125:0 | 0.7:0.225:8 | 0.7:0.225:0 |
FRESH smoothies | ||||
Dry matter [%] | 4.358 cd ± 0.016 | 4.472 a ± 0.006 | 4.323 c ± 0.033 | 4.404 bd ± 0.021 |
Ash [%] | 4.933 a ± 0.155 | 5.349 a ± 0.604 | 4.273 a ± 0.056 | 4.447 b ± 0.005 |
pH | 4.550 a ± 0.026 | 4.563 a ± 0.005 | 4.457 b ± 0.005 | 4.447 b ± 0.005 |
Osmolality [Osmo/kg] | −12.040 c ± 0.559 | −11.396 c ± 1.327 | −5.433 a ± 1.406 | −9.790 bc ± 0.232 |
Soluble solid [°Bx] | 9.500 d ± 0.082 | 9.500 d ± 0.100 | 11.167 b ± 0.125 | 10.500 c ± 0.020 |
DRIED smoothies | ||||
Dry matter [%] | 86.387 a ± 2.935 | 87.852 a ± 0.568 | 87.046 a ± 1.845 | 86.711 a ± 1.888 |
Pectin [%] | 2.540 c ± 0.100 | 3.357 d ± 0.296 | 1.865 b ± 0.028 | 0.455 a ± 0.161 |
Sacarose [%] | 0.140 a ± 0.003 | 0.235 c ± 0.009 | 0.160 b ± 0.002 | 0.132 a ± 0.012 |
Glucose [%] | 0.170 d ± 0.003 | 0.138 a ± 0.003 | 0.165 c ± 0.001 | 0.145 b ± 0.001 |
Fructose [%] | 0.166 b ± 0.002 | 0.127 a ± 0.002 | 0.161 b ± 0.003 | 0.141 a ± 0.009 |
Glycerol [%] | 0.003 b ± 0.000 | 0.002 a ± 0.000 | 0.002 a ± 0.000 | 0.002 a ± 0.000 |
Citric Acid [%] | 0.017 b ± 0.000 | 0.017 b ± 0.000 | 0.018 b ± 0.000 | 0.015 a ± 0.000 |
DB1 | DB2 | DC1 | DC2 | ||
---|---|---|---|---|---|
Fresh smoothies | L* | 32.612 b ± 0.056 | 33.480 c ± 0.025 | 30.666 a ± 0.032 | 32.713 b ± 0.030 |
a* | 23.570 b ± 0.044 | 25.863 d ± 0.032 | 21.510 a ± 0.045 | 24.333 c ± 0.011 | |
b* | 5.140 a ± 0.030 | 6.643 a ± 0.450 | 9.546 b ± 0.152 | 9.526 b ± 0.015 | |
Dried smoothies | L* | 45.090 b ± 0.137 | 54.603 c ± 0.286 | 44.523 a ± 0.332 | 46.850 b ± 0.000 |
a* | 21.216 b ± 0.061 | 19.963 a ± 0.035 | 19.916 a ± 0.089 | 20.110 a ± 0.103 | |
b* | 10.416 b ± 0.056 | 6.946 a ± 0.058 | 12.053 d ± 0.040 | 11.606 c ± 0.092 |
Component | Group | DB1 | DB2 | DC1 | DC2 |
---|---|---|---|---|---|
Apigenin | 0.174 a ± 0.002 | 0.753 c ± 0.013 | 0.422 b ± 0.021 | 0.172 a ± 0.008 | |
Luteolin | 0.028 a ± 0.009 | 0.078 b ± 0.009 | 0.062 b ± 0.010 | 0.036 a ± 0.012 | |
Vitexin | 0.002 a ± 0.000 | 0.010 b ± 0.002 | 0.010 b ± 0.001 | 0.002 a ± 0.000 | |
Total flavones | 0.204 | 0.841 | 0.494 | 0.210 | |
Quercetin | 0.891 a ± 0.031 | 1.840 b ± 0.102 | 1.945 b ± 0.080 | 0.856 a ± 0.029 | |
Rutin | 3.373 a ± 0.053 | 3.823 b ± 0.034 | 3.832 b ± 0.014 | 3.698 b ± 0.016 | |
Total flavanols | 4.264 | 5.663 | 5.777 | 4.554 | |
Kaempferol | Flavonols | 0.001 a ± 0.000 | 0.004 b ± 0.001 | 0.008 c ± 0.001 | 0.004 a ± 0.001 |
Naringenin | Flavanones | 0.077 a ± 0.006 | 0.161 b ± 0.011 | 0.169 b ± 0.009 | 0.074 a ± 0.006 |
Total flavonoids | 4.546 | 6.669 | 6.448 | 4.842 | |
Gallic acid | 0.003 a ± 0.001 | 0.004 a ± 0.001 | 0.004 a ± 0.001 | 0.003 a ± 0.000 | |
4-Hydroxybenzoic acid | 0.002 b ± 0.000 | 0.004 c ± 0.001 | 0.001 a ± 0.000 | 0.000 a ± 0.000 | |
Vanillic acid | 0.000 a ± 0.000 | 0.000 a ± 0.000 | 0.000 a ± 0.000 | 0.000 a ± 0.000 | |
Protocatechuic acid | 0.000 a ± 0.000 | 0.001 a ± 0.000 | 0.002 b ± 0.000 | 0.001 a ± 0.000 | |
Salicylic acid | 0.002 a ± 0.000 | 0.004 b ± 0.000 | 0.004 b ± 0.001 | 0.002 a ± 0.000 | |
Total benzoic acid derivates | 0.007 | 0.013 | 0.011 | 0.006 | |
Caffeic acid | 0.001 a ± 0.000 | 0.001 a ± 0.000 | 0.002 b ± 0.000 | 0.001 a ± 0.000 | |
Syringic acid | 0.001 a ± 0.000 | 0.002 b ± 0.000 | 0.003 b ± 0.000 | 0.001 a ± 0.000 | |
Ferulic acid | 0.025 a ± 0.002 | 0.050 b ± 0.008 | 0.057 b ± 0.010 | 0.026 a ± 0.003 | |
Sinapic acid | 0.040 a ± 0.011 | 0.100 b ± 0.008 | 0.107 b ± 0.007 | 0.051 a ± 0.004 | |
t-Cinnamic acid | 0.031 a ± 0.007 | 0.070 b ± 0.009 | 0.090 c ± 0.005 | 0.027 a ± 0.002 | |
Chlorogenic acid | 0.103 a ± 0.008 | 0.235 c ± 0.012 | 0.162 b ± 0.007 | 0.080 a ± 0.009 | |
Rosmaric acid | 0.000 a ± 0.000 | 0.001 a ± 0.000 | 0.001 a ± 0.000 | 0.001 a ± 0.000 | |
Total cinnamic acid derivates | 0.201 | 0.459 | 0.422 | 0.187 | |
Total phenolics with HPLC | 4.754 | 2.141 | 6.881 | 5.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przeor, M.; Mhanna, N.I.A.; Drożdżyńska, A.; Kobus-Cisowska, J. The Application of Mulberry Elements into a Novel Form of Easy-to-Prepare Dried Smoothie. Appl. Sci. 2024, 14, 10432. https://doi.org/10.3390/app142210432
Przeor M, Mhanna NIA, Drożdżyńska A, Kobus-Cisowska J. The Application of Mulberry Elements into a Novel Form of Easy-to-Prepare Dried Smoothie. Applied Sciences. 2024; 14(22):10432. https://doi.org/10.3390/app142210432
Chicago/Turabian StylePrzeor, Monika, Nour I. A. Mhanna, Agnieszka Drożdżyńska, and Joanna Kobus-Cisowska. 2024. "The Application of Mulberry Elements into a Novel Form of Easy-to-Prepare Dried Smoothie" Applied Sciences 14, no. 22: 10432. https://doi.org/10.3390/app142210432
APA StylePrzeor, M., Mhanna, N. I. A., Drożdżyńska, A., & Kobus-Cisowska, J. (2024). The Application of Mulberry Elements into a Novel Form of Easy-to-Prepare Dried Smoothie. Applied Sciences, 14(22), 10432. https://doi.org/10.3390/app142210432