Enhanced Cell Growth and Astaxanthin Production in Haematococcus lacustris by Mechanostimulation of Seed Cysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalga and Photosynthetic Cultivation
2.2. Microfluidic Collision and Experimentation
2.3. Cell Morphology and Viability Analyses
2.4. Quantification of ROS
2.5. Quantification of Astaxanthin
2.6. Other Analytical Methods
2.7. Statistical Analysis
3. Results and Discussion
3.1. Life Cycle and Cell Morphology of H. lacustris
3.2. Effect of Flow Rate on Seed Cysts and Cell Growth
3.3. Effect of Loop Number on Seed Cysts and Cell Growth
3.4. Effect of Microfluidic Collision on Cyst Germination Rate
3.5. Effect of Microfluidic Collision on Biomass and Astaxanthin Production
3.6. Process Development for Microalgal Biorefinery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, R.; Gupta, S.K.; Shabnam, N.; Oliveira, C.Y.B.; Nema, A.K.; Ansari, F.A.; Bux, F. Role of microalgae in global CO2 sequestration: Physiological mechanism, recent development, challenges, and future prospective. Sustainability 2021, 13, 13061. [Google Scholar] [CrossRef]
- Rammuni, M.N.; Ariyadasa, T.U.; Nimarshana, P.H.V.; Attalage, R.A. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem. 2019, 277, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Hong, S.J.; Yun, S.; Kang, M.J.; Cho, B.K.; Lee, H.; Choi, H.K.; Kim, D.M.; Lee, C.G. Metabolic engineering for redirecting carbon to enhance the fatty acid content of Synechocystis sp. PCC6803. Biotechnol. Bioprocess Eng. 2023, 28, 274–280. [Google Scholar] [CrossRef]
- Hong, J.S.; Shin, W.; Nam, H.; Yun, J.H.; Kim, H.S.; Ahn, K.H. Sedimentation and rheological study of microalgal cell (Chlorella sp. HS2) Suspension. Biotechnol. Bioprocess Eng. 2022, 27, 451–460. [Google Scholar] [CrossRef]
- Yarkent, Ç.; Oncel, S.S. Recent progress in microalgal squalene production and its cosmetic application. Biotechnol. Bioprocess Eng. 2022, 27, 295–305. [Google Scholar] [CrossRef]
- Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, J.; Huang, J.; Wu, Z.; Yi, L.; Bi, Y.; Chen, F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresour. Technol. 2021, 340, 125736. [Google Scholar] [CrossRef]
- Aneesh, P.A.; Ajeeshkumar, K.K.; Lekshmi, R.G.K.; Anandan, R.; Ravishankar, C.N.; Mathew, S. Bioactivities of astaxanthin from natural sources, augmenting its biomedical potential: A review. Trends Food Sci. Technol. 2022, 125, 81–90. [Google Scholar] [CrossRef]
- Nishino, A.; Maoka, T.; Yasui, H. Analysis of reaction products of astaxanthin and its acetate with reactive oxygen species using LC/PDA ESI-MS and ESR spectrometry. Tetrahedron Lett. 2016, 57, 1967–1970. [Google Scholar] [CrossRef]
- Ambati, R.R.; Moi, P.S.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef]
- Lu, Q.; Li, H.; Zou, Y.; Liu, H.; Yang, L. Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. Algal Res. 2021, 54, 102178. [Google Scholar] [CrossRef]
- Nakada, T.; Ota, S. What is the correct name for the type of Haematococcus Flot. (volvocales, chlorophyceae)? Taxon 2016, 65, 343–348. [Google Scholar] [CrossRef]
- Patel, A.K.; Tambat, V.S.; Chen, C.W.; Chauhan, A.S.; Kumar, P.; Vadrale, A.P.; Huang, C.Y.; Dong, C.D.; Singhania, R.R. Recent advancements in astaxanthin production from microalgae: A review. Bioresour. Technol. 2022, 364, 128030. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Lee, N.; Oh, H.M.; Kim, D.G.; Ahn, C.Y. Fast-track production of astaxanthin by reduced cultivation time with the “red cell inoculation system” (RCIS) and various chemical cues in Haematococcus lacustris. J. Appl. Phycol. 2020, 32, 41–50. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Duan, C.; Yi, S.; Gao, Z.; Xiao, C.; Agathos, S.N.; Wang, G.; Li, J. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol. Adv. 2020, 43, 107602. [Google Scholar] [CrossRef]
- Li, Q.; Li, L.; Zhang, Y.; Gao, H.; Zhao, Y.; Yu, X. Chemical inducers regulate ROS signalling to stimulate astaxanthin production in Haematococcus pluvialis under environmental stresses: A review. Trends Food Sci. Technol. 2023, 136, 181–193. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Joun, J.M.; Lee, J.; Hong, M.E.; Pham, H.M.; Chang, W.S.; Sim, S.J. Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresour. Technol. 2017, 244, 1235–1244. [Google Scholar] [CrossRef]
- Cho, S.J.; Sung, Y.J.; Lee, J.S.; Yu, B.S.; Sim, S.J. Robust cyst germination induction in Haematococcus pluvialis to enhance astaxanthin productivity in a semi-continuous outdoor culture system using power plant flue gas. Bioresour. Technol. 2021, 338, 125533. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Hong, M.E.; Sim, S.J. Enhanced astaxanthin extraction efficiency from Haematococcus pluvialis via the cyst germination in outdoor culture systems. Process Biochem. 2015, 50, 2275–2280. [Google Scholar] [CrossRef]
- Ma, R.; Thomas-Hall, S.R.; Chua, E.T.; Eltanahy, E.; Netzel, M.E.; Netzel, G.; Lu, Y.; Schenk, P.M. Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination. Algal Res. 2018, 35, 215–222. [Google Scholar] [CrossRef]
- Kwak, H.S.; Kim, J.Y.H.; Sim, S.J. A microreactor system for cultivation of Haematococcus pluvialis and astaxanthin production. J. Nanosci. Nanotechnol. 2015, 15, 1618–1623. [Google Scholar] [CrossRef] [PubMed]
- Solovchenko, A.E. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth. Res. 2015, 125, 437–449. [Google Scholar] [CrossRef]
- Yang, H.E.; Yu, B.S.; Sim, S.J. Enhanced astaxanthin production of Haematococcus pluvialis strains induced salt and high light resistance with gamma irradiation. Bioresour. Technol. 2023, 372, 128651. [Google Scholar] [CrossRef]
- Ding, W.; Zhao, Y.; Xu, J.W.; Zhao, P.; Li, T.; Ma, H.; Reiter, R.J.; Yu, X. Melatonin: A multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis. J. Agric. Food Chem. 2018, 66, 7701–7711. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kurimura, Y.; Tsuji, Y. Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol. Lett. 1997, 19, 507–509. [Google Scholar] [CrossRef]
- Hong, M.E.; Hwang, S.K.; Chang, W.S.; Kim, B.W.; Lee, J.; Sim, S.J. Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber–Weiss reaction. Appl. Microbiol. Biotechnol. 2015, 99, 5203–5215. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Matter, I.A.; Lee, N.; Jung, M.; Lee, Y.C.; Choi, S.A.; Lee, S.Y.; Kim, J.R.; Oh, Y.K. Enhancement of astaxanthin production by Haematococcus pluvialis using magnesium aminoclay nanoparticles. Bioresour. Technol. 2020, 307, 123270. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Wu, G.; Li, G.; Sun, H.; Deng, S.; Shen, Y.; Chen, G.; Zhang, R.; Meng, C.; et al. Transcriptome analysis in Haematococcus pluvialis: Astaxanthin induction by salicylic acid (SA) and jasmonic acid (JA). PLoS ONE 2015, 10, e0140609. [Google Scholar] [CrossRef] [PubMed]
- Mahadi, R.; Kim, S.; Ilhamsyah, D.P.A.; Vahisan, L.P.S.; Narasimhan, A.L.; Park, G.W.; Lee, S.Y.; Oh, Y.K. Rapid accumulation of astaxanthin in Haematococcus pluvialis induced by mild hydrostatic pressure. Biotechnol. Bioprocess Eng. 2023, 28, 345–351. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, C.; Jeon, M.S.; Park, J.; Choi, Y.E. Enhancement of microalga Haematococcus pluvialis growth and astaxanthin production by electrical treatment. Bioresour. Technol. 2018, 268, 815–819. [Google Scholar] [CrossRef]
- Han, S.I.; Jeon, M.S.; Ahn, J.W.; Choi, Y.E. Establishment of ultrasonic stimulation to enhance growth of Haematococcus lacustris. Bioresour. Technol. 2022, 360, 127525. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Narasimhan, A.; Lee, N.; Kim, S.; Kim, Y.; Christabel, C.; Yu, H.; Kim, E.; Oh, Y. Enhanced astaxanthin production in Haematococcus lacustris by electrochemical stimulation of cyst germination. Bioresour. Technol. 2024, 411, 131301. [Google Scholar] [CrossRef]
- Banerjee, R.; Kumar, S.P.J.; Mehendale, N.; Sevda, S.; Garlapati, V.K. Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects. Renew. Sustain. Energy Rev. 2019, 101, 548–558. [Google Scholar] [CrossRef]
- Cao, R.; Tian, H.; Tian, Y.; Fu, X. A hierarchical mechanotransduction system: From macro to micro. Adv. Sci. 2024, 11, 2302327. [Google Scholar] [CrossRef]
- Min, S.K.; Yoon, G.H.; Joo, J.H.; Sim, S.J.; Shin, H.S. Mechanosensitive physiology of Chlamydomonas reinhardtii under direct membrane distortion. Sci. Rep. 2014, 4, 4675. [Google Scholar] [CrossRef]
- Song, J.; Kim, D.; Lee, L.P. Mechanobiological stimulations of algal cells for energy harvesting. Adv. Theory Simul. 2021, 4, 2000281. [Google Scholar] [CrossRef]
- Zoheir, A.E.; Stolle, C.; Rabe, K.S. Microfluidics for adaptation of microorganisms to stress: Design and application. Appl. Microbiol. Biotechnol. 2024, 108, 162. [Google Scholar] [CrossRef]
- Han, S.I.; Yao, J.; Lee, C.; Park, J.; Choi, Y.E. A novel approach to enhance astaxanthin production in Haematococcus lacustris using a microstructure-based culture platform. Algal Res. 2019, 39, 101464. [Google Scholar] [CrossRef]
- Yao, J.; Kim, H.S.; Kim, J.Y.; Choi, Y.E.; Park, J. Mechanical stress induced astaxanthin accumulation of H. pluvialis on a chip. Lab Chip 2020, 20, 647–654. [Google Scholar] [CrossRef]
- Deng, Y.; Kizer, M.; Rada, M.; Sage, J.; Wang, X.; Cheon, D.J.; Chung, A.J. Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator. Nano Lett. 2018, 18, 2705–2710. [Google Scholar] [CrossRef]
- Choi, H.; Kim, B.; Jeong, S.H.; Kim, T.Y.; Kim, D.P.; Oh, Y.K.; Hahn, S.K. Microalgae-based biohybrid microrobot for accelerated diabetic wound healing. Small 2023, 19, 2204617. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kim, B.; Yim, S.J.; Kim, J.O.; Kim, D.P.; Kim, Y.C. On-chip electroporation system of polyimide film with sheath flow design for efficient delivery of molecules into microalgae. J. Ind. Eng. Chem. 2020, 88, 159–166. [Google Scholar] [CrossRef]
- Sathiyavahisan, L.P.; Lakshmi Narasimhan, A.; Mahadi, R.; Kim, S.; Christabel, C.; Yu, H.; Kim, Y.E.; Oh, Y.K. Rapid induction of astaxanthin in Haematococcus lacustris by mild electric stimulation. Appl. Sci. 2023, 13, 12959. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Huisman, J.M.; Osborn, A. Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 1991, 3, 295–304. [Google Scholar] [CrossRef]
- Cray, R.; Levine, I. Oxidative stress modulates astaxanthin synthesis in Haematococcus pluvialis. J. Appl. Phycol. 2022, 34, 2327–2338. [Google Scholar] [CrossRef]
- Hagen, C.; Siegmund, S.; Braune, W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 2002, 37, 217–226. [Google Scholar] [CrossRef]
- Mahadi, R.; Vahisan, L.P.S.; Ilhamsyah, D.P.A.; Kim, S.; Kim, B.; Lee, N.; Oh, Y.K. Enhancement of astaxanthin and fatty acid production in Haematococcus pluvialis using strigolactone. Appl. Sci. 2022, 12, 1791. [Google Scholar] [CrossRef]
- Elisabeth, B.; Rayen, F.; Behnam, T. Microalgae culture quality indicators: A review. Crit. Rev. Biotechnol. 2021, 41, 457–473. [Google Scholar] [CrossRef]
- Piccinini, F.; Tesei, A.; Arienti, C.; Bevilacqua, A. Cell counting and viability assessment of 2D and 3D cell cultures: Expected reliability of the trypan blue assay. Biol. Proced. Online 2017, 19, 8. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, Y.; Wakisaka, M.; Yang, Z.; Yin, Y.; Fang, W.; Xu, Y.; Omura, T.; Yu, R.; Zheng, A.L.T. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Sci. Total Environ. 2023, 896, 165200. [Google Scholar] [CrossRef]
- Foyer, C.H.; Shigeoka, S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011, 155, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Tesson, B.; Charrier, B. Brown algal morphogenesis: Atomic force microscopy as a tool to study the role of mechanical forces. Front. Plant Sci. 2014, 5, 471. [Google Scholar] [CrossRef] [PubMed]
- Dufrêne, Y.F.; Persat, A. Mechanomicrobiology: How bacteria sense and respond to forces. Nat. Rev. Microbiol. 2020, 18, 227–240. [Google Scholar] [CrossRef]
- Guo, D.; Li, Z.; Jiang, C.; Xu, X.; Shao, D.; Lei, S.; Shi, J. Mechanisms for cells responding to mechanical stresses via the cell membrane. In Proceedings of the Third International Conference on Biological Information and Biomedical Engineering, Hangzhou, China, 18 November 2019; Available online: https://ieeexplore.ieee.org/document/8903400 (accessed on 20 September 2024).
- Fu, J.; Huang, Y.; Liao, Q.; Xia, A.; Fu, Q.; Zhu, X. Photo-bioreactor design for microalgae: A review from the aspect of CO2 transfer and conversion. Bioresour. Technol. 2019, 292, 121947. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Yu, W.; Zhang, M.; Chen, F.; Liu, J. Mitochondrial alternative oxidase pathway accelerates non-motile cell germination by enhancing respiratory carbon metabolism and maintaining redox poise in Haematococcus pluvialis. Bioresour. Technol. 2024, 402, 130729. [Google Scholar] [CrossRef] [PubMed]
- Hagen, C.; Grünewald, K.; Xyländer, M.; Rothe, E. Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. J. Appl. Phycol. 2001, 13, 79–87. [Google Scholar] [CrossRef]
- Khoo, K.S.; Lee, S.Y.; Ooi, C.W.; Fu, X.; Miao, X.; Ling, T.C.; Show, P.L. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour. Technol. 2019, 288, 121606. [Google Scholar] [CrossRef]
- Park, Y.H.; Han, S.I.; Oh, B.; Kim, H.S.; Jeon, M.S.; Kim, S.; Choi, Y.E. Microalgal secondary metabolite productions as a component of biorefinery: A review. Bioresour. Technol. 2022, 344, 126206. [Google Scholar] [CrossRef]
- Enders, A.; Grünberger, A.; Bahnemann, J. Towards small scale: Overview and applications of microfluidics in biotechnology. Mol. Biotechnol. 2024, 66, 365–377. [Google Scholar] [CrossRef]
- Leal-Alves, C.; Deng, Z.; Kermeci, N.; Shih, S.C.C. Integrating microfluidics and synthetic biology: Advancements and diverse applications across organisms. Lab Chip 2024, 24, 2834–2860. [Google Scholar] [CrossRef]
- Ugolini, G.S.; Wang, M.; Secchi, E.; Pioli, R.; Ackermann, M.; Stocker, R. Microfluidic approaches in microbial ecology. Lab Chip 2024, 24, 1394–1418. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, Z.; Liu, K.; Xiao, Q.; Geng, Y.; Xu, F.; Ouyang, S.; Zheng, K.; Fan, Y.; Jin, N.; et al. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination. J. Nanobiotechnol. 2022, 20, 171. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christabel, C.; Kim, B.; Lakshmi Narasimhan, A.; Sathiyavahisan, L.P.; Ilhamsyah, D.P.A.; Kim, E.-J.; Oh, Y.-K. Enhanced Cell Growth and Astaxanthin Production in Haematococcus lacustris by Mechanostimulation of Seed Cysts. Appl. Sci. 2024, 14, 10434. https://doi.org/10.3390/app142210434
Christabel C, Kim B, Lakshmi Narasimhan A, Sathiyavahisan LP, Ilhamsyah DPA, Kim E-J, Oh Y-K. Enhanced Cell Growth and Astaxanthin Production in Haematococcus lacustris by Mechanostimulation of Seed Cysts. Applied Sciences. 2024; 14(22):10434. https://doi.org/10.3390/app142210434
Chicago/Turabian StyleChristabel, Catherine, Bolam Kim, Aditya Lakshmi Narasimhan, Laxmi Priya Sathiyavahisan, Dea Prianka Ayu Ilhamsyah, Eui-Jin Kim, and You-Kwan Oh. 2024. "Enhanced Cell Growth and Astaxanthin Production in Haematococcus lacustris by Mechanostimulation of Seed Cysts" Applied Sciences 14, no. 22: 10434. https://doi.org/10.3390/app142210434
APA StyleChristabel, C., Kim, B., Lakshmi Narasimhan, A., Sathiyavahisan, L. P., Ilhamsyah, D. P. A., Kim, E. -J., & Oh, Y. -K. (2024). Enhanced Cell Growth and Astaxanthin Production in Haematococcus lacustris by Mechanostimulation of Seed Cysts. Applied Sciences, 14(22), 10434. https://doi.org/10.3390/app142210434