Optimization of Ultrasonication Probe-Assisted Extraction Parameters for Bioactive Compounds from Opuntia macrorhiza Using Taguchi Design and Assessment of Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Instrumentation
2.3. Raw Material Collection and Handling
2.4. Ultrasonication Extraction Procedure
2.5. Experimental Design
2.6. Bioactive Compounds of OM Extracts
2.6.1. Spectrophotometric Determination of Total Polyphenols
2.6.2. Chromatographic Quantification of Individual Polyphenols
2.6.3. Ascorbic Acid Determination
2.7. Assessment of Antioxidant Capacity of OM Extracts
2.8. Pigment Analysis
2.8.1. Colorimetric Analysis
2.8.2. Betalains Content (BC)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization of US-Assisted Extraction Conditions Through Taguchi Design
3.1.1. TPC and Antioxidant Capacity of OM Peel and Pulp Extracts
3.1.2. Pigment Analysis of OM Extracts
3.2. Multiple Factor Analysis (MFA) and Multivariate Correlation Analysis (MCA)
3.3. Partial Least Squares (PLS) Analysis
3.4. Analysis of the Optimal Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chahdoura, H.; Morales, P.; Barreira, J.C.M.; Barros, L.; Fernández-Ruiz, V.; Ferreira, I.C.F.R.; Achour, L. Dietary Fiber, Mineral Elements Profile and Macronutrients Composition in Different Edible Parts of Opuntia Microdasys (Lehm.) Pfeiff and Opuntia Macrorhiza (Engelm.). LWT Food Sci. Technol. 2015, 64, 446–451. [Google Scholar] [CrossRef]
- Amamou, S.; Lazreg, H.; Hafsa, J.; Majdoub, H.; Rihouey, C.; Le Cerf, D.; Achour, L. Effect of Extraction Condition on the Antioxidant, Antiglycation and α-Amylase Inhibitory Activities of Opuntia Macrorhiza Fruit Peels Polysaccharides. LWT 2020, 127, 109411. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; Jaeger, H.; Knorr, D.; El-Samahy, S.; Rohn, S.; Kroh, L.W. Impact of Traditional and Innovative Technologies on Some Characteristics and Bioactive Compounds of Opuntia Macrorhiza Juice. Procedia Food Sci. 2011, 1, 1410–1416. [Google Scholar] [CrossRef]
- Chahdoura, H.; Barreira, J.C.M.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Flamini, G.; Soković, M.; Achour, L.; Ferreira, I.C.F.R. Bioactivity, Hydrophilic, Lipophilic and Volatile Compounds in Pulps and Skins of Opuntia Macrorhiza and Opuntia Microdasys Fruits. LWT 2019, 105, 57–65. [Google Scholar] [CrossRef]
- Chahdoura, H.; Chaouch, M.A.; Chouchéne, W.; Chahed, A.; Achour, S.; Adouni, K.; Mosbah, H.; Majdoub, H.; Flamini, G.; Achour, L. Incorporation of Opuntia Macrorhiza Engelm. in Cake-Making: Physical and Sensory Characteristics. LWT 2018, 90, 15–21. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; Kroh, L.W.; Abd El-Hady, E.; Omran, H.; El-Samahy, S.K.; Rohn, S. Opuntia Ficus-Indica and Opuntia Macrorhiza: Promising Sources of Flavonols—Comparison Between Cultivars from Different Origins. Acta Hortic. 2013, 995, 251–256. [Google Scholar] [CrossRef]
- Gómez-López, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia Stricta Var. Dilenii’s Fruits: Optimization and Biological Activities. Antioxidants 2021, 10, 1786. [Google Scholar] [CrossRef]
- Missaoui, M.; D’Antuono, I.; D’Imperio, M.; Linsalata, V.; Boukhchina, S.; Logrieco, A.F.; Cardinali, A. Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient. Molecules 2020, 25, 2176. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Antunes-Ricardo, M.; Welti-Chanes, J.; Cano, M.P. Digestive Stability and Bioaccessibility of Antioxidants in Prickly Pear Fruits from the Canary Islands: Healthy Foods and Ingredients. Antioxidants 2020, 9, 164. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; De La Guardia, M. Green Extraction Techniques in Green Analytical Chemistry. TrAC Trends Anal. Chem. 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Rao, M.V.; Sengar, A.S.; Sunil, C.K.; Rawson, A. Ultrasonication—A Green Technology Extraction Technique for Spices: A Review. Trends Food Sci. Technol. 2021, 116, 975–991. [Google Scholar] [CrossRef]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Kotsou, K.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Optimization of Four Different Rosemary Extraction Techniques Using Plackett–Burman Design and Comparison of Their Antioxidant Compounds. Int. J. Mol. Sci. 2024, 25, 7708. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochemistry 2021, 70, 105325. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Rivadeneyra-Mata, M.; Ramos-Cassellis, M.E.; Aparicio-Fernández, X.; Navarro-Cruz, A.R.; Ávila-Sosa, R.; Ochoa-Velasco, C.E. Characterization of Red Prickly Pear Peel (Opuntia Ficus-Indica L.) and Its Mucilage Obtained by Traditional and Novel Methodologies. Food Meas. 2019, 13, 1111–1119. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R.; Rodriguez-Lopez, A.D.; Garcia-Castello, E.M. Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules 2019, 24, 3618. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Carrera, C.; Palma, M.; Barbero, G.F.; Aliaño-González, M.J. Ultrasound-Assisted Extraction of Betalains from Opuntia Fruit Pulp of Different Color Varieties. Agronomy 2022, 12, 2604. [Google Scholar] [CrossRef]
- Ravanfar, R.; Tamadon, A.M.; Niakousari, M. Optimization of Ultrasound Assisted Extraction of Anthocyanins from Red Cabbage Using Taguchi Design Method. J. Food Sci. Technol. 2015, 52, 8140–8147. [Google Scholar] [CrossRef]
- Prakash Maran, J.; Manikandan, S. Response Surface Modeling and Optimization of Process Parameters for Aqueous Extraction of Pigments from Prickly Pear (Opuntia Ficus-Indica) Fruit. Dye. Pigment. 2012, 95, 465–472. [Google Scholar] [CrossRef]
- Simon, S.; Sedhulakshmi, K.; Joseph, J.; George, D. Optimization of Extraction Parameters of Bioactive Components from Moringa Oleifera Leaves Using Taguchi Method. Biomass Conv. Bioref. 2023, 13, 11973–11982. [Google Scholar] [CrossRef]
- Azadeh, A.; Miri-Nargesi, S.S.; Goldansaz, S.M.; Zoraghi, N. Design and Implementation of an Integrated Taguchi Method for Continuous Assessment and Improvement of Manufacturing Systems. Int. J. Adv. Manuf. Technol. 2012, 59, 1073–1089. [Google Scholar] [CrossRef]
- Sharma, R.; Bhunia, B.; Mondal, A.; Kanti Bandyopadhyay, T.; Devi, I.; Oinam, G.; Prasanna, R.; Abraham, G.; Nath Tiwari, O. Statistical Optimization of Process Parameters for Improvement of Phycobiliproteins (PBPs) Yield Using Ultrasound-Assisted Extraction and Its Kinetic Study. Ultrason. Sonochemistry 2020, 60, 104762. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Investigation of the Polyphenol Recovery of Overripe Banana Peel Extract Utilizing Cloud Point Extraction. Eng 2023, 4, 3026–3038. [Google Scholar] [CrossRef]
- Daneshfar, A.; Ghaziaskar, H.S.; Homayoun, N. Solubility of Gallic Acid in Methanol, Ethanol, Water, and Ethyl Acetate. J. Chem. Eng. Data 2008, 53, 776–778. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Bioactive Compound Extraction of Hemp (Cannabis Sativa L.) Leaves through Response Surface Methodology Optimization. AgriEngineering 2024, 6, 1300–1318. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Mantiniotou, M.; Kalompatsios, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Optimization of Pressurized Liquid Extraction (PLE) Parameters for Extraction of Bioactive Compounds from Moringa Oleifera Leaves and Bioactivity Assessment. Int. J. Mol. Sci. 2024, 25, 4628. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Schieber, A.; Carle, R. Evaluation of Colour Properties and Chemical Quality Parameters of Cactus Juices. Eur. Food Res. Technol. 2003, 216, 303–311. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Frosi, I.; Montagna, I.; Colombo, R.; Milanese, C.; Papetti, A. Recovery of Chlorogenic Acids from Agri-Food Wastes: Updates on Green Extraction Techniques. Molecules 2021, 26, 4515. [Google Scholar] [CrossRef]
- Dirar, A.I.; Alsaadi, D.H.M.; Wada, M.; Mohamed, M.A.; Watanabe, T.; Devkota, H.P. Effects of Extraction Solvents on Total Phenolic and Flavonoid Contents and Biological Activities of Extracts from Sudanese Medicinal Plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Kumar, R.; Methven, L.; Oruna-Concha, M.J. A Comparative Study of Ethanol and Citric Acid Solutions for Extracting Betalains and Total Phenolic Content from Freeze-Dried Beetroot Powder. Molecules 2023, 28, 6405. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, V.; Chatzimitakos, T.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Antioxidant-Rich Extracts from Lemon Verbena (Aloysia Citrodora L.) Leaves through Response Surface Methodology. Oxygen 2024, 4, 1–19. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; El-Samahy, S.K.; Rohn, S.; Kroh, L.W. Flavonols, Betacyanins Content and Antioxidant Activity of Cactus Opuntia Macrorhiza Fruits. Food Res. Int. 2011, 44, 2169–2174. [Google Scholar] [CrossRef]
- Panda, D.; Manickam, S. Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.; Kudanga, T. Phenolic Compound Profile and Biological Activities of Southern African Opuntia Ficus-Indica Fruit Pulp and Peels. LWT 2019, 111, 337–344. [Google Scholar] [CrossRef]
- Muniz, V.R.G.D.F.; Ribeiro, I.S.; Beckmam, K.R.L.; Godoy, R.C.B.D. The Impact of Color on Food Choice. Braz. J. Food Technol. 2023, 26, e2022088. [Google Scholar] [CrossRef]
- Valero-Galván, J.; González-Fernández, R.; Sigala-Hernández, A.; Núñez-Gastélum, J.A.; Ruiz-May, E.; Rodrigo-García, J.; Larqué-Saavedra, A.; del Rocío Martínez-Ruiz, N. Sensory Attributes, Physicochemical and Antioxidant Characteristics, and Protein Profile of Wild Prickly Pear Fruits (O. Macrocentra Engelm., O. Phaeacantha Engelm., and O. Engelmannii Salm-Dyck Ex Engelmann.) and Commercial Prickly Pear Fruits (O. Ficus-Indica (L.) Mill.). Food Res. Int. 2021, 140, 109909. [Google Scholar] [CrossRef] [PubMed]
- Felker, P.; Stintzing, F.C.; Müssig, E.; Leitenberger, M.; Carle, R.; Vogt, T.; Bunch, R. Colour Inheritance in Cactus Pear (Opuntia Ficus-Indica) Fruits. Ann. Appl. Biol. 2008, 152, 307–318. [Google Scholar] [CrossRef]
- Salem, N.; Lamine, M.; Damergi, B.; Ezahra, F.; Feres, N.; Jallouli, S.; Hammami, M.; Khammassi, S.; Selmi, S.; Elkahoui, S.; et al. Natural Colourants Analysis and Biological Activities. Association to Molecular Markers to Explore the Biodiversity of Opuntia Species. Phytochem. Anal. 2020, 31, 892–904. [Google Scholar] [CrossRef]
- Benattia, F.K.; Arrar, Z. Antioxidative and Antiradical Activities of Bioactive Compounds of Extracts from Algerian Prickly Pear (Opuntia Ficus-Indica L.) Fruits. Curr. Nutr. Food Sci. 2018, 14, 211–217. [Google Scholar] [CrossRef]
- Yeddes, N.; Chérif, J.K.; Guyot, S.; Sotin, H.; Ayadi, M.T. Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [PubMed]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and Quantification of Individual Betalain and Phenolic Compounds in Mexican and Spanish Prickly Pear (Opuntia Ficus-Indica L. Mill) Tissues: A Comparative Study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- Serra, A.T.; Poejo, J.; Matias, A.A.; Bronze, M.R.; Duarte, C.M.M. Evaluation of Opuntia Spp. Derived Products as Antiproliferative Agents in Human Colon Cancer Cell Line (HT29). Food Res. Int. 2013, 54, 892–901. [Google Scholar] [CrossRef]
- Kıvrak, Ş.; Kıvrak, İ.; Karababa, E. Analytical Evaluation of Phenolic Compounds and Minerals of Opuntia Robusta J.C. Wendl. and Opuntia Ficus-Barbarica A. Berger. Int. J. Food Prop. 2018, 21, 229–241. [Google Scholar] [CrossRef]
Independent Variables | Code Units | Coded Variable Level | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Liquid-to-solid ratio (R, mL/g) | X1 | 20 | 40 | 60 |
Ethanol in water concentration (C, % v/v) | X2 | 0 | 50 | 100 |
Pulsation (ON/OFF) (P, pulses/min) | X3 | 12 | 30 | 48 |
Extraction time (t, min) | X4 | 4 | 12 | 20 |
Design Point | Independent Variables | |||
---|---|---|---|---|
X1 (R, mL/g) | X2 (C, % v/v) | X3 (P, P/min) | X4 (t, min) | |
1 | 3 (60) | 2 (50) | 1 (12) | 3 (20) |
2 | 1 (20) | 2 (50) | 2 (30) | 2 (12) |
3 | 1 (20) | 3 (100) | 3 (48) | 3 (20) |
4 | 1 (20) | 1 (0) | 1 (12) | 1 (4) |
5 | 3 (60) | 1 (0) | 3 (48) | 2 (12) |
6 | 2 (40) | 1 (0) | 2 (30) | 3 (20) |
7 | 2 (40) | 2 (50) | 3 (48) | 1 (4) |
8 | 2 (40) | 3 (100) | 1 (12) | 2 (12) |
9 | 3 (60) | 3 (100) | 2 (30) | 1 (4) |
Phenolic Compound | Linear Regression Equation | LOD a (mg/L) | LOQ b (mg/L) | R2 c |
---|---|---|---|---|
β-Resorcylic acid | y = 73,173x − 374,752 | 6.38 | 19.35 | 0.9960 |
4-Hydroxybenzoic acid | y = 82,756x − 322,848 | 4.30 | 13.02 | 0.9978 |
Pyrogallol | y = 57,521x − 598,596 | 12.93 | 39.18 | 0.9919 |
Pyrocatechuic acid | y = 189,392x − 1,430,809 | 9.92 | 30.06 | 0.9904 |
Caffeic acid | y = 83,601x − 606,104 | 9.03 | 27.36 | 0.9942 |
Homovanillic acid | y = 15,054x − 30,731 | 8.34 | 25.27 | 0.9951 |
Syringic acid | y = 172,124x − 1,804,823 | 14.08 | 42.66 | 0.9881 |
m-Coumaric acid | y = 110,557x − 583,252 | 7.37 | 22.34 | 0.9954 |
Design Point | TPC (mg GAE/g dw) | FRAP (μmol AAE/g dw) | DPPH (μmol AAE/g dw) | |||
---|---|---|---|---|---|---|
Pulp | Peel | Pulp | Peel | Pulp | Peel | |
1 | 10.34 ± 0.23 | 10.21 ± 0.25 | 47.95 ± 2.83 | 31.16 ± 1.93 | 30.93 ± 2.07 | 28.65 ± 2.01 |
2 | 11.38 ± 0.60 | 12.44 ± 0.54 | 37.80 ± 1.21 | 38.93 ± 2.49 | 30.88 ± 1.70 | 42.98 ± 2.71 |
3 | 6.14 ± 0.42 | 4.44 ± 0.33 | 24.81 ± 0.94 | 16.41 ± 0.80 | 27.23 ± 1.88 | 20.74 ± 0.64 |
4 | 6.29 ± 0.43 | 3.34 ± 0.19 | 26.21 ± 0.58 | 12.41 ± 0.72 | 26.00 ± 1.22 | 13.09 ± 0.43 |
5 | 11.83 ± 0.52 | 11.66 ± 0.59 | 45.36 ± 1.45 | 39.06 ± 1.60 | 47.59 ± 0.94 | 41.50 ± 1.58 |
6 | 10.53 ± 0.26 | 11.34 ± 0.32 | 40.58 ± 2.52 | 38.41 ± 1.34 | 42.59 ± 2.51 | 42.58 ± 1.62 |
7 | 13.47 ± 0.96 | 10.15 ± 0.38 | 49.22 ± 3.30 | 31.43 ± 0.94 | 54.73 ± 4.05 | 30.53 ± 1.68 |
8 | 5.51 ± 0.21 | 2.95 ± 0.16 | 22.00 ± 1.21 | 9.14 ± 0.43 | 23.56 ± 0.80 | 17.36 ± 0.76 |
9 | 6.39 ± 0.21 | 2.77 ± 0.17 | 25.04 ± 1.85 | 6.16 ± 0.18 | 26.93 ± 1.24 | 19.21 ± 0.54 |
Design Point | L* | a* | b* | Color | ||||
---|---|---|---|---|---|---|---|---|
Pulp | Peel | Pulp | Peel | Pulp | Peel | Pulp | Peel | |
1 | 49.5 ± 0.2 | 48.6 ± 0.7 | 46.2 ± 0.5 | 44.6 ± 0.9 | −5.9 ± 0.8 | −2.2 ± 0.9 | ||
2 | 41.9 ± 0.5 | 39.7 ± 0.6 | 34.4 ± 0.9 | 31.3 ± 0.5 | 2.0 ± 1.3 | 3.5 ± 1.4 | ||
3 | 74.8 ± 1.4 | 73.8 ± 0.2 | −9.8 ± 0.8 | −11.4 ± 0.1 | 38.6 ± 3.6 | 51.1 ± 1.2 | ||
4 | 49.1 ± 0.9 | 50.2 ± 1.4 | 46.7 ± 1.6 | 47.7 ± 0.9 | −3.8 ± 0.9 | −4.3 ± 1.4 | ||
5 | 51.7 ± 0.5 | 52.2 ± 1.2 | 45.9 ± 0.8 | 44.6 ± 2.4 | −2.0 ± 0.8 | −6.2 ± 0.9 | ||
6 | 51.9 ± 0.6 | 48.1 ± 1.2 | 45.1 ± 0.8 | 45.4 ± 2.4 | −3.3 ± 1.2 | −2.2 ± 0.9 | ||
7 | 45.9 ± 0.4 | 44.6 ± 0.5 | 45.4 ± 0.9 | 39.6 ± 1.4 | 0.4 ± 1.4 | 2.8 ± 1.3 | ||
8 | 77.4 ± 0.9 | 76.9 ± 0.4 | −5.6 ± 0.5 | −7.2 ± 0.5 | 22.3 ± 2.1 | 33.3 ± 0.8 | ||
9 | 78.4 ± 0.7 | 76.4 ± 0.5 | −3.5 ± 0.1 | −5.6 ± 0.5 | 15.8 ± 0.5 | 24.2 ± 0.9 |
Opuntia macrorhiza | Independent Variables | PLS Model Values 1 | ||||||
---|---|---|---|---|---|---|---|---|
X1 (R, mL/g) | X2 (C, % v/v) | X3 (P, P/min) | X4 (t, min) | TPC | BC | FRAP | DPPH | |
Pulp | 3 (60) | 1 (0) | 3 (48) | 2 (12) | 13.21 | 1064.30 | 50.95 | 50.80 |
Peel | 3 (60) | 1 (0) | 3 (48) | 3 (20) | 14.38 | 1015.66 | 47.62 | 47.72 |
Parameters | Pulp | Peel | ||
---|---|---|---|---|
UAE | STE | UAE | STE | |
TPC (mg GAE/g dw) | 12.43 ± 0.26 a,b | 10.27 ± 0.33 c | 13.07 ± 0.78 a | 11.11 ± 0.52 b,c |
BC (μg/g dw) | 1076 ± 62 a | 1090 ± 51 a | 974 ± 41 a | 1099 ± 81 a |
FRAP (μmol AAE/g dw) | 50.79 ± 2.44 a,b | 54.61 ± 1.97 a | 45.56 ± 3.24 b | 48.76 ± 2.44 a,b |
DPPH (μmol AAE/g dw) | 51.32 ± 2.05 a | 49.49 ± 3.22 a | 49.25 ± 1.38 a | 48.53 ± 2.09 a |
AAC (mg/g dw) | 5.07 ± 0.10 a | 4.45 ± 0.33 b | 3.57 ± 0.11 c | 2.15 ± 0.05 d |
L* | 50.1 ± 1.7 a,b | 45.6 ± 0.8 c | 50.7 ± 1.9 a | 46.8 ± 0.5 b,c |
a* | 47.7 ± 2.0 a | 46.7 ± 2.1 a | 46.2 ± 2.3 a | 45.4 ± 0.5 a |
b* | −7.5 ± 0.8 b | 1.1 ± 0.1 a | −7.0 ± 0.9 b | 0.5 ± 0.1 a |
Color 1 |
Phenolic Compound(mg/g dw) | Pulp | Peel | ||
---|---|---|---|---|
UAE | STE | UAE | STE | |
β-Resorcylic acid | 0.29 ± 0.02 b | 0.32 ± 0.02 a,b | 0.32 ± 0.01 a,b | 0.34 ± 0.02 a |
4-Hydroxybenzoic acid | 0.26 ± 0.01 a | 0.26 ± 0.02 a | 0.25 ± 0.01 a | 0.25 ± 0.01 a |
Pyrogallol | 0.65 ± 0.03 b | 0.68 ± 0.05 b | 0.88 ± 0.02 a | 0.66 ± 0.02 b |
Pyrocatechuic acid | 0.46 ± 0.03 b | 0.48 ± 0.02 b | 0.49 ± 0.02 a,b | 0.53 ± 0.02 a |
Caffeic acid | 0.58 ± 0.03 a | 0.48 ± 0.02 b | 0.52 ± 0.02 b | 0.51 ± 0.02 b |
Homovanillic acid | 0.47 ± 0.01 b | 0.39 ± 0.02 c | 0.50 ± 0.01 b | 0.67 ± 0.05 a |
Syringic acid | 0.64 ± 0.01 a | 0.67 ± 0.04 a | 0.65 ± 0.03 a | 0.70 ± 0.03 a |
m-Coumaric acid | 0.51 ± 0.03 b | 0.37 ± 0.02 c | 0.48 ± 0.03 b | 0.60 ± 0.04 a |
Total identified | 3.85 ± 0.18 a,b | 3.65 ± 0.20 b | 4.07 ± 0.14 a,b | 4.26 ± 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalompatsios, D.; Athanasiadis, V.; Mantiniotou, M.; Lalas, S.I. Optimization of Ultrasonication Probe-Assisted Extraction Parameters for Bioactive Compounds from Opuntia macrorhiza Using Taguchi Design and Assessment of Antioxidant Properties. Appl. Sci. 2024, 14, 10460. https://doi.org/10.3390/app142210460
Kalompatsios D, Athanasiadis V, Mantiniotou M, Lalas SI. Optimization of Ultrasonication Probe-Assisted Extraction Parameters for Bioactive Compounds from Opuntia macrorhiza Using Taguchi Design and Assessment of Antioxidant Properties. Applied Sciences. 2024; 14(22):10460. https://doi.org/10.3390/app142210460
Chicago/Turabian StyleKalompatsios, Dimitrios, Vassilis Athanasiadis, Martha Mantiniotou, and Stavros I. Lalas. 2024. "Optimization of Ultrasonication Probe-Assisted Extraction Parameters for Bioactive Compounds from Opuntia macrorhiza Using Taguchi Design and Assessment of Antioxidant Properties" Applied Sciences 14, no. 22: 10460. https://doi.org/10.3390/app142210460
APA StyleKalompatsios, D., Athanasiadis, V., Mantiniotou, M., & Lalas, S. I. (2024). Optimization of Ultrasonication Probe-Assisted Extraction Parameters for Bioactive Compounds from Opuntia macrorhiza Using Taguchi Design and Assessment of Antioxidant Properties. Applied Sciences, 14(22), 10460. https://doi.org/10.3390/app142210460