Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Properties and Selection
2.1.1. AA 6061 Alloy
2.1.2. SS 316L
2.1.3. Ti6Al4V
2.2. Swivel Mechanism Design
2.3. Simulation Parameters
3. Results
3.1. Simulation Results for Collapsed and Fully Extended AA 6061, Ti6Al4V, and SS 316L
3.2. Discussions
3.3. Manufacturability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raguindin, P.F.; Bertolo, A.; Zeh, R.M.; Fränkl, G.; Itodo, O.A.; Capossela, S.; Bally, L.; Minder, B.; Brach, M.; Eriks-Hoogland, I.; et al. Body Composition According to Spinal Cord Injury Level: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3911. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Lee, B.S.; Lee, H.J.; Kim, E.J.; Lee, J.A.; Yang, S.P.; Kim, T.Y.; Pak, H.R.; Kim, H.K.; Kim, H.Y.; et al. Energy Efficiency and Patient Satisfaction of Gait with Knee-Ankle-Foot Orthosis and Robot (ReWalk)-Assisted Gait in Patients with Spinal Cord Injury. Ann. Rehabil. Med. 2020, 44, 131–141. [Google Scholar] [CrossRef]
- Chen, C.-I.; Fan, H.-C.; Wu, K.-L. Unusual Causes of Paraplegia: Literature Review. Tungs Med. J. 2020, 14, 5–12. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Wang, F.; Wang, W. Current status of traumatic spinal cord injury caused by traffic accident in Northern China. Sci. Rep. 2022, 12, 13892. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J.; Henshaw, J.; Heywood, O.; Taylor, A. Clinical applications of the paraplegic swivel walker. J. Biomed. Eng. 1980, 2, 250–256. [Google Scholar] [CrossRef]
- Farmer, I.R.; Poiner, R.; Rose, G.K.; Patrick, J.H. The adult ORLAU Swivel Walker—Ambulation for paraplegic and tetraplegic patients. Spinal Cord 1982, 20, 248–254. [Google Scholar] [CrossRef]
- Stallard, J.; Rose, G.K. Independence for adult paraplegics in swivel walkers. J. Med. Eng. Technol. 1981, 5, 136–137. [Google Scholar] [CrossRef]
- Lough, L.K.; Nielsen, D.H. Ambulation of children with myelomeningocele: Parapodium versus parapodium with orlau swivel modification. Dev. Med. Child Neurol. 1986, 28, 489–497. [Google Scholar] [CrossRef]
- Stallard, J.; Farmer, I.R.; Poiner, R.; Major, R.E.; Rose, G.K. Engineering Design Considerations of the ORLAU Swivel Walker. Eng. Med. 1986, 15, 3–8. [Google Scholar] [CrossRef]
- Taylor, A.; Rocca, L. An improved swivel walker for paraplegics. J. Biomed. Eng. 1982, 4, 325–327. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Chang, L.-W.; Lin, K.-H. Determination of foot-plate spacing for swivel walkers by an optimization method. biomed. Eng. Appl. Basis Commun. 2010, 22, 213–221. [Google Scholar] [CrossRef]
- Ko, H.-Y. Wheelchairs and Wheelchair Mobility in Spinal Cord Injuries. In Management and Rehabilitation of Spinal Cord Injuries; Ko, H.-Y., Ed.; Springer Nature: Singapore, 2022; pp. 837–860. [Google Scholar] [CrossRef]
- Sprigle, S.; Huang, M. Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320907819. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, R.; McCoy, R.; Hu, H.; He, L.; Gao, Z. Effects of an integrated safety system for swivel seat arrangements in frontal crash. Front. Bioeng. Biotechnol. 2023, 11, 1153265. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Kumar, A.; Kumar, R.; Gautam, R.; Behera, C. Tribological performance of SS 316L, commercially pure Titanium, and Ti6Al4V in different solutions for biomedical applications. Mater. Today Proc. 2023, 78, A1–A8. [Google Scholar] [CrossRef]
- Fakoya, M.B. Effect of Heat Treatment on the Microstructure and Hardness Property of Additively Manufactured Ti6Al-4V and Ti-6Al-4V-4.5wt.%316L Components for Biomedical Applications. Master’s Thesis, Uppsala University, Uppsala, Sverige, 2023. [Google Scholar]
- Ruggiero, A.; De Stefano, M. Experimental investigation on the bio-tribocorrosive behavior of Ti6Al4V alloy and 316 L stainless steel in two biological solutions. Tribol. Int. 2023, 190, 109033. [Google Scholar] [CrossRef]
- Prince, R.M.R.; Selvakumar, N.; Arulkirubakaran, D.; Singh, S.C.E. Lifespan Enhancement of Stainless Steel 316L Artificial Hip Prosthesis by Novel Ti-6Al-4V-2ZrC Coating. J. Mater. Eng. Perform. 2023, 33, 9699–9715. [Google Scholar] [CrossRef]
- Manaka, T.; Tsutsumi, Y.; Takada, Y.; Chen, P.; Ashida, M.; Doi, K.; Katayama, H.; Hanawa, T. Galvanic Corrosion among Ti–6Al–4V ELI Alloy, Co–Cr–Mo Alloy, 316L-Type Stainless Steel, and Zr–1Mo Alloy for Orthopedic Implants. Mater. Trans. 2023, 64, 131–137. [Google Scholar] [CrossRef]
- Kareem, A.; Abu Qudeiri, J.; Abdudeen, A.; Ahammed, T.; Ziout, A. A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting. Materials 2021, 14, 175. [Google Scholar] [CrossRef]
- Pramod, R.; Shanmugam, N.S.; Krishnadasan, C.K.; Radhakrishnan, G.; Thomas, M. Design and development of aluminum alloy 6061-T6 pressure vessel liner for aerospace applications: A technical brief. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 1130–1148. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, A.K.; Mishra, R.K.; Shukla, A.K.; Sharma, C. Processing Techniques, Microstructural and Mechanical Properties of Additive Manufactured 316L Stainless Steel: Review. J. Inst. Eng. Ser. D 2023, 105, 1305–1318. [Google Scholar] [CrossRef]
- Nabeel, M.; Farooq, A.; Miraj, S.; Yahya, U.; Hamad, K.; Deen, K.M. Comparison of the Properties of Additively Manufactured 316L Stainless Steel for Orthopedic Applications: A Review. World Sci. Annu. Rev. Funct. Mater. 2022, 1, 2230001. [Google Scholar] [CrossRef]
- Ding, H.; Zou, B.; Wang, X.; Liu, J.; Li, L. Microstructure, mechanical properties and machinability of 316L stainless steel fabricated by direct energy deposition. Int. J. Mech. Sci. 2022, 243, 108046. [Google Scholar] [CrossRef]
- Goyal, R.; Khosla, C.; Goyal, K.; Singh, J.; Singh, K. Punam Review on Machine Learning Driven Biomedical Metallic Composites. In Proceedings of the 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022; pp. 1714–1718. [Google Scholar] [CrossRef]
- Shaikh-Mohammed, J.; Dash, S.S.; Sarda, V.; Sujatha, S. Design journey of an affordable manual standing wheelchair. Disabil. Rehabilitation: Assist. Technol. 2021, 18, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Pongsakornsathien, N.; Gardi, A.; Sabatini, R.; Kistan, T.; Ezer, N.; Bursch, D.J. Adaptive human-robot interactions for multiple unmanned aerial vehicles. Robotics 2021, 10, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, W.; Ma, B. Effect of nitrogen content on mechanical properties of 316L(N) austenitic stainless steel. Mater. Sci. Eng. A 2023, 884, 145529. [Google Scholar] [CrossRef]
- Alshujery, M.K.; Al-Saadie, K.A.S. Anodizing of Aluminum 6061 Alloy with Incorporated Nanoparticles to Inhibits the Aluminum Corrosion. Int. J. Heal. Sci. 2022, 6, 930–940. [Google Scholar] [CrossRef]
- Shen, H.; Liao, C.; Zhou, J.; Zhao, K. Two-step laser based surface treatments of laser metal deposition manufactured Ti6Al4V components. J. Manuf. Process. 2021, 64, 239–252. [Google Scholar] [CrossRef]
Materials Properties | Density (g/cm3) | Young’s Modulus (GPa) | Ultimate Tensile Strength (MPa) | Elongation at Break (%) | Poisson Ratio | Tensile Yield Strength (MPa) | Fatigue Strength (MPa) | Shear Modulus (GPa) |
---|---|---|---|---|---|---|---|---|
SS 316L | 8.0 | 193 | 515 | 60 | 0.3 | 205 | 146.45 | 193 |
Al6061 | 2.7 | 68.9 | 310 | 13 | 0.33 | 276 | 96.5 | 26 |
Ti6Al4V | 4.43 | 114 | 951 | 14 | 0.342 | 882 | 510 | 44 |
Parameters | Expression | |
---|---|---|
Linear Displacement (S) | S = ut + (½)at2 | a = 0.0116 ms−1 |
Linear velocity (v) | v = u + at v2 = u2 + 2as | v = 0.058 ms−1 |
Angular Displacement (θ) | θ = θ0 + ω0t + (1/2)αt2 | |
Angular Velocity (ω) | ω = ω0 + αt | ω0 = 1.028 rads−1 |
Angular Acceleration (α) | α = (ω − ω0)/t | α = 0.0596 rads−2 |
Linear Displacement (d) at a certain radius (r) | d = rθ |
Part | Dimension (mm) |
---|---|
Guide rail | 350 |
Base plate | Length: 320; Breadth: 400 |
Swivel plate | Length: 320; Breadth: 400 |
Groove Inner Diameter | 112.84 |
Groove Outer Diameter | 160 |
Distance traveled by swivel plate | 145 |
Parameter | Value |
---|---|
Centrifugal force (Fc) | 6.9599 N |
Torque (T) | 0.386 Nm |
Frictional force (Fr) | 412.02 N |
Shear force Fs | −405.077 N (acts in the opposite direction) |
Forces (kN) | SS 316L | AA 6061 | Ti6Al4V | |||
---|---|---|---|---|---|---|
Yield Strength (1.724 × 108 MPa) | Yield Strength (2.750 × 108 MPa) | Yield Strength (8.74 × 108 MPa) | ||||
Von Mises (N/m2) | ||||||
Collapsed (102) | Extended (108) | Collapsed (102) | Extended (108) | Collapsed (102) | Extended (108) | |
1 | 2.02 | 1.878 | 1.987 | 1.865 | 2.00 | 1.87 |
1.1 | 2.233 | 2.066 | 2.186 | 2.051 | 2.204 | 2.057 |
1.2 | 2.436 | 2.253 | 2.385 | 2.238 | 2.404 | 2.244 |
1.3 | 2.639 | 2.441 | 2.584 | 2.242 | 2.604 | 2.431 |
1.4 | 2.842 | 2.629 | 2.782 | 2.611 | 2.805 | 2.618 |
1.5 | 3.045 | 2.817 | 2.981 | 2.797 | 3.00 | 2.805 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajayi, O.K.; Malomo, B.O.; Du, S.; Owolabi, H.A.; Oladosu, O.A. Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism. Appl. Sci. 2024, 14, 10462. https://doi.org/10.3390/app142210462
Ajayi OK, Malomo BO, Du S, Owolabi HA, Oladosu OA. Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism. Applied Sciences. 2024; 14(22):10462. https://doi.org/10.3390/app142210462
Chicago/Turabian StyleAjayi, Oluwaseun K., Babafemi O. Malomo, Shengzhi Du, Hakeem A. Owolabi, and Olusola A. Oladosu. 2024. "Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism" Applied Sciences 14, no. 22: 10462. https://doi.org/10.3390/app142210462
APA StyleAjayi, O. K., Malomo, B. O., Du, S., Owolabi, H. A., & Oladosu, O. A. (2024). Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism. Applied Sciences, 14(22), 10462. https://doi.org/10.3390/app142210462