Bioaccessibility and Stability Studies on Encapsulated Phenolics and Carotenoids from Olive and Tomato Pomace: Development of a Functional Fruit Beverage
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the o/w Nanoemulsions
2.3. Nanoemulsion Characterization
2.3.1. DLS Measurements, Turbidity, Viscosity
2.3.2. Color Measurements
2.3.3. Determination of Lycopene Concentration
2.3.4. Total Phenolic Content (TPC) and Antioxidant Activity
2.4. Nanoemulsion Stability Study
2.5. Bioaccessibility Determination
2.6. Preparation of the Functional Beverage and Shelf-Life Study
2.7. Microbiological Analysis
2.8. Statistical Analysis
3. Results
3.1. Nanoemulsion Characterization—Particle Size (MDD), Particle Size Distribution (PDI), Viscosity, and Color (Whiteness)
3.2. Nanoemulsion Stability During Storage
3.2.1. Physical Stability—Droplet Size During Storage
3.2.2. Chemical Stability—Deterioration of Lycopene Concentration and Nanoemulsion’s Color During Storage
3.3. Characterization and Bioaccessibility Study of o/w Nanoemulsions Enriched with Lycopene and Phenolic Extracts
3.3.1. Characterization of Nanoemulsions Enriched with Lycopene and Phenolic Extracts
3.3.2. Bioaccessibility Study of Nanoemulsions
3.4. Bioaccessibility and Shelf-Life Study of the Functional Beverage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martínez-Hernández, G.B.; Castillejo, N.; Artés-Hernández, F. Effect of Fresh–Cut Apples Fortification with Lycopene Microspheres, Revalorized from Tomato by-Products, during Shelf Life. Postharvest Biol. Technol. 2019, 156, 110925. [Google Scholar] [CrossRef]
- Strati, I.F.; Oreopoulou, V. Recovery of Carotenoids from Tomato Processing By-Products—A Review. Food Res. Int. 2014, 65, 311–321. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; González-Hernández, R.; Martinez-Ferez, A. On the Effect of the Operating Parameters for Two-Phase Olive-Oil Washing Wastewater Combined Phenolic Compounds Recovery and Reclamation by Novel Ion Exchange Resins. Sep. Purif. Technol. 2018, 195, 50–59. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional Compounds from Olive Pomace to Obtain High-Added Value Foods—A Review. J. Sci. Food Agric. 2021, 1, 15–26. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, A.D.; Melgar, B.; Conidi, C.; Barros, L.; Ferreira, I.C.F.R.; Cassano, A.; Garcia-Castello, E.M. Food Industry By-Products Valorization and New Ingredients; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128182932. [Google Scholar]
- Gullon, P.; Gullon, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.; Simal-Gándara, J. Valorization of By-Products from Olive Oil Industry and Added-Value Applications for Innovative Functional Foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.B.; Marques, M.C.; Hacke, A.; Loubet Filho, P.S.; Cazarin, C.B.B.; Mariutti, L.R.B. Trust Your Gut: Bioavailability and Bioaccessibility of Dietary Compounds. Curr. Res. Food Sci. 2022, 5, 228–233. [Google Scholar] [CrossRef]
- Cardoso, C.; Afonso, C.; Lourenço, H.; Costa, S.; Nunes, M.L. Bioaccessibility Assessment Methodologies and Their Consequences for the Risk-Benefit Evaluation of Food. Trends Food Sci. Technol. 2015, 41, 5–23. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of Polyphenols—A Review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Lu, W.; Kelly, A.L.; Miao, S. Emulsion-Based Encapsulation and Delivery Systems for Polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Meng, Q.; Long, P.; Zhou, J.; Ho, C.T.; Zou, X.; Chen, B.; Zhang, L. Improved Absorption of β-Carotene by Encapsulation in an Oil-in-Water Nanoemulsion Containing Tea Polyphenols in the Aqueous Phase. Food Res. Int. 2019, 116, 731–736. [Google Scholar] [CrossRef]
- Aboalnaja, K.O.; Yaghmoor, S.; Kumosani, T.A.; McClements, D.J. Utilization of Nanoemulsions to Enhance Bioactivity of Pharmaceuticals, Supplements, and Nutraceuticals: Nanoemulsion Delivery Systems and Nanoemulsion Excipient Systems. Expert Opin. Drug Deliv. 2016, 13, 1327–1336. [Google Scholar] [CrossRef]
- Tan, Y.; McClements, D.J. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021, 26, 6895. [Google Scholar] [CrossRef]
- Napiórkowska, A.; Khaneghah, A.M.; Kurek, M.A. Essential Oil Nanoemulsions—A New Strategy to Extend the Shelf Life of Smoothies. Foods 2024, 13, 1854. [Google Scholar] [CrossRef]
- Vieira, E.F.; Souza, S. Formulation Strategies for Improving the Stability and Bioavailability of Vitamin D-Fortified Beverages: A Review. Foods 2022, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; McClements, D.J. Optimization of Lipid Nanoparticle Formation for Beverage Applications: Influence of Oil Type, Cosolvents, and Cosurfactants on Nanoemulsion Properties. J. Food Eng. 2013, 118, 198–204. [Google Scholar] [CrossRef]
- Ma, P.; Zeng, Q.; Tai, K.; He, X.; Yao, Y.; Hong, X.; Yuan, F. Preparation of Curcumin-Loaded Emulsion Using High Pressure Homogenization: Impact of Oil Phase and Concentration on Physicochemical Stability. LWT—Food Sci. Technol. 2017, 84, 34–46. [Google Scholar] [CrossRef]
- Qian, C.; McClements, D.J. Formation of Nanoemulsions Stabilized by Model Food-Grade Emulsifiers Using High-Pressure Homogenization: Factors Affecting Particle Size. Food Hydrocoll. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of Food-Grade Curcumin Nanoemulsion and Its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion. J. Food Sci. 2016, 81, N745–N753. [Google Scholar] [CrossRef]
- Maldonado, A.; Riquelme, N.; Muñoz-Fariña, O.; García, O.; Arancibia, C. Stability and Bioaccessibility of α-Tocopherol-Enriched Nanoemulsions Containing Different Edible Oils as Carriers. LWT 2023, 174, 114419. [Google Scholar] [CrossRef]
- Zhao, C.; Wei, L.; Yin, B.; Liu, F.; Li, J.; Liu, X.; Wang, J.; Wang, Y. Encapsulation of Lycopene within Oil-in-Water Nanoemulsions Using Lactoferrin: Impact of Carrier Oils on Physicochemical Stability and Bioaccessibility. Int. J. Biol. Macromol. 2020, 153, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, Z.; Muriel Mundo, J.; McClements, D.J. Factors Impacting Lipid Digestion and Nutraceutical Bioaccessibility Assessed by Standardized Gastrointestinal Model (INFOGEST): Emulsifier Type. Food Res. Int. 2020, 137, 109739. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in Edible Nanoemulsions: Digestion, Bioavailability, and Potential Toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef]
- Gonçalves, R.F.S.; Vicente, A.A.; Pinheiro, A.C. Incorporation of Curcumin-Loaded Lipid-Based Nano Delivery Systems into Food: Release Behavior in Food Simulants and a Case Study of Application in a Beverage. Food Chem. 2023, 405, 134740. [Google Scholar] [CrossRef]
- Niu, Z.; Acevedo-Fani, A.; McDowell, A.; Barnett, A.; Loveday, S.M.; Singh, H. Nanoemulsion Structure and Food Matrix Determine the Gastrointestinal Fate and in Vivo Bioavailability of Coenzyme Q10. J. Control. Release 2020, 327, 444–455. [Google Scholar] [CrossRef]
- Molet-Rodríguez, A.; Turmo-Ibarz, A.; Salvia-Trujillo, L.; Martín-Belloso, O. Incorporation of Antimicrobial Nanoemulsions into Complex Foods: A Case Study in an Apple Juice-Based Beverage. LWT 2021, 141, 110926. [Google Scholar] [CrossRef]
- Nemli, E.; Ozakdogan, S.; Tomas, M.; McClements, D.J.; Capanoglu, E. Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions. Food Biophys. 2021, 16, 355–364. [Google Scholar] [CrossRef]
- Radić, K.; Dukovski, B.J.; Čepo, D.V. Influence of Pomace Matrix and Cyclodextrin Encapsulation on Olive Pomace Polyphenols’ Bioaccessibility and Intestinal Permeability. Nutrients 2020, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- Tsevdou, M.; Ntzimani, A.; Katsouli, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024, 29, 2303. [Google Scholar] [CrossRef] [PubMed]
- Katsouli, M.; Tzia, C. Effect of Lipid Type, Dispersed Phase Volume Fraction and Emulsifier on the Physicochemical Properties of Nanoemulsions Fortified with Conjugated Linoleic Acid (CLA): Process Optimization and Stability Assessment during Storage Conditions. J. Mol. Liq. 2019, 292, 111397. [Google Scholar] [CrossRef]
- Katsouli, M.; Giannou, V.; Tzia, C. A Comparative Study of O/W Nanoemulsions Using Extra Virgin Olive or Olive-Pomace Oil: Impacts on Formation and Stability. JAOCS. J. Am. Oil Chem. Soc. 2018, 95, 1341–1353. [Google Scholar] [CrossRef]
- Park, J.W. Functional Protein Additives in Surimi Gels. J. Food Sci. 1994, 59, 525–527. [Google Scholar] [CrossRef]
- Katsouli, M.; Giannou, V.; Tzia, C. Enhancement of Physicochemical and Encapsulation Stability of O1/W/O2multiple Nanoemulsions Loaded with Coenzyme Q10or Conjugated Linoleic Acid by Incorporating Polyphenolic Extract. Food Funct. 2020, 11, 8878–8892. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Τaoukis, P.S.; Labuza, T.P.; Saguy, I.S. Kinetics of Food Deterioration and Shelf-Life Prediction. In Handbook of Food Engineering Practice; Valentas, K.J., Rotstein, E., Singh, R.P., Eds.; CRC Press: Boca Raton, NY, USA, 1997; pp. 361–403. ISBN 0849386942. [Google Scholar]
- Katsouli, M.; Semenoglou, I.; Kotsiri, M.; Gogou, E.; Tsironi, T.; Taoukis, P. Active and Intelligent Packaging for Enhancing Modified Atmospheres and Monitoring Quality and Shelf Life of Packed Gilthead Seabream Fillets at Isothermal and Variable Temperature Conditions. Foods 2022, 11, 2245. [Google Scholar] [CrossRef]
- Durak, M.Z.; Churey, J.J.; Danyluk, M.D.; Worobo, R.W. Identification and Haplotype Distribution of Alicyclobacillus Spp. from Different Juices and Beverages. Int. J. Food Microbiol. 2010, 142, 286–291. [Google Scholar] [CrossRef]
- Shehzad, Q.; Rehman, A.; Jafari, S.M.; Zuo, M.; Khan, M.A.; Ali, A.; Khan, S.; Karim, A.; Usman, M.; Hussain, A.; et al. Improving the Oxidative Stability of Fish Oil Nanoemulsions by Co-Encapsulation with Curcumin and Resveratrol. Colloids Surf. B Biointerfaces 2021, 199, 111481. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, Y.; Zhao, J.; Mao, L. Characterization and Stability Evaluation of β-Carotene Nanoemulsions Prepared by High Pressure Homogenization under Various Emulsifying Conditions. Food Res. Int. 2008, 41, 61–68. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions and Principles, Practices, and Techniques, 3rd ed.; CRC Press Taylor & Francis Group: New York, NY, USA, 2016; ISBN 978-1-4987-2668-9. [Google Scholar]
- Katsouli, M.; Polychniatou, V.; Tzia, C. Optimization of Water in Olive Oil Nano-Emulsions Composition with Bioactive Compounds by Response Surface Methodology. LWT 2018, 89, 740–748. [Google Scholar] [CrossRef]
- Diamante, L.M.; Lan, T. Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s−1. J. Food Process. 2014, 2014, 234583. [Google Scholar] [CrossRef]
- Prieto, C.; Calvo, L. The Encapsulation of Low Viscosity Omega-3 Rich Fish Oil in Polycaprolactone by Supercritical Fluid Extraction of Emulsions. J. Supercrit. Fluids 2017, 128, 227–234. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Impact of Lemon Oil Composition on Formation and Stability of Model Food and Beverage Emulsions. Food Chem. 2012, 134, 749–757. [Google Scholar] [CrossRef]
- Marete, E.N.; Jacquier, J.C.; O’Riordan, D. Feverfew as a Source of Bioactives for Functional Foods: Storage Stability in Model Beverages. J. Funct. Foods 2011, 3, 38–43. [Google Scholar] [CrossRef]
- Kim, S.O.; Ha, T.V.A.; Choi, Y.J.; Ko, S. Optimization of Homogenization-Evaporation Process for Lycopene Nanoemulsion Production and Its Beverage Applications. J. Food Sci. 2014, 79, N1604–N1610. [Google Scholar] [CrossRef]
- Li, J.; Campardelli, R.; Firpo, G.; Zhang, J.; Perego, P. Oil-in-Water Nanoemulsions Loaded with Lycopene Extracts Encapsulated by Spray Drying: Formulation, Characterization and Optimization. Chin. J. Chem. Eng. 2024, 70, 73–81. [Google Scholar] [CrossRef]
- Kong, K.W.; Khoo, H.E.; Prasad, K.N.; Ismail, A.; Tan, C.P.; Rajab, N.F. Revealing the Power of the Natural Red Pigment Lycopene. Molecules 2010, 15, 959–987. [Google Scholar] [CrossRef]
- Özogul, Y.; Durmus, M.; Ucar, Y.; Özogul, F.; Regenstein, J.M. Comparative Study of Nanoemulsions Based on Commercial Oils (Sunflower, Canola, Corn, Olive, Soybean, and Hazelnut Oils): Effect on Microbial, Sensory, and Chemical Qualities of Refrigerated Farmed Sea Bass. Innov. Food Sci. Emerg. Technol. 2016, 33, 422–430. [Google Scholar] [CrossRef]
- Meroni, E.; Raikos, V. Physicochemical Stability, Antioxidant Properties and Bioaccessibility of β-Carotene in Orange Oil-in-Water Beverage Emulsions: Influence of Carrier Oil Types. Food Funct. 2018, 9, 320–330. [Google Scholar] [CrossRef]
- González-Reza, R.M.; García-Betanzos, C.I.; Sánchez-Valdes, L.I.; Quintanar-Guerrero, D.; Cornejo-Villegas, M.A.; Zambrano-Zaragoza, M.L. The Functionalization of Nanostructures and Their Potential Applications in Edible Coatings. Coatings 2018, 8, 160. [Google Scholar] [CrossRef]
- Liang, X.; Yan, J.; Guo, S.; McClements, D.J.; Ma, C.; Liu, X.; Liu, F. Enhancing Lycopene Stability and Bioaccessibility in Homogenized Tomato Pulp Using Emulsion Design Principles. Innov. Food Sci. Emerg. Technol. 2021, 67, 102525. [Google Scholar] [CrossRef]
- Pool, H.; Mendoza, S.; Xiao, H.; McClements, D.J. Encapsulation and Release of Hydrophobic Bioactive Components in Nanoemulsion-Based Delivery Systems: Impact of Physical Form on Quercetin Bioaccessibility. Food Funct. 2013, 4, 162–174. [Google Scholar] [CrossRef]
- Salvia-trujillo, L.; Qian, C.; Martín-belloso, O.; Mcclements, D.J. Modulating β-Carotene Bioaccessibility by Controlling Oil Composition and Concentration in Edible Nanoemulsions. Food Chem. 2013, 139, 878–884. [Google Scholar] [CrossRef]
- Walker, R.M.; Gumus, C.E.; Decker, E.A.; McClements, D.J. Improvements in the Formation and Stability of Fish Oil-in-Water Nanoemulsions Using Carrier Oils: MCT, Thyme Oil, & Lemon Oil. J. Food Eng. 2017, 211, 60–68. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, H.; Wang, C.; Zhao, C.; Peng, Q.; Zhang, T.; Zhao, C. Stability and in Vitro Digestibility of Beta-Carotene in Nanoemulsions Fabricated with Different Carrier Oils. Food Sci. Nutr. 2018, 6, 2537–2544. [Google Scholar] [CrossRef]
- Yao, M.; Li, Z.; Julian McClements, D.; Tang, Z.; Xiao, H. Design of Nanoemulsion-Based Delivery Systems to Enhance Intestinal Lymphatic Transport of Lipophilic Food Bioactives: Influence of Oil Type. Food Chem. 2020, 317, 126229. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef]
- Failla, M.L.; Chitchumronchokchai, C.; Ferruzzi, M.G.; Goltz, S.R.; Campbell, W.W. Unsaturated Fatty Acids Promote Bioaccessibility and Basolateral Secretion of Carotenoids and α-Tocopherol by Caco-2 Cells. Food Funct. 2014, 5, 1101–1112. [Google Scholar] [CrossRef]
- Goltz, S.R.; Campbell, W.W.; Chitchumroonchokchai, C.; Failla, M.L.; Ferruzzi, M.G. Meal Triacylglycerol Profile Modulates Postprandial Absorption of Carotenoids in Humans. Mol. Nutr. Food Res. 2012, 56, 866–877. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; Olmo-García, L.; Figueiredo-González, M.; González-Barreiro, C.; Carrasco-Pancorbo, A.; Cancho-Grande, B. Application of the INFOGEST Standardized Method to Assess the Digestive Stability and Bioaccessibility of Phenolic Compounds from Galician Extra-Virgin Olive Oil. J. Agric. Food Chem. 2021, 69, 11592–11605. [Google Scholar] [CrossRef]
- Işik, N.; Alteheld, B.; Kühn, S.; Schulze-Kaysers, N.; Kunz, B.; Wollseifen, H.R.; Stehle, P.; Lesser, S. Polyphenol Release from Protein and Polysaccharide Embedded Plant Extracts during in Vitro Digestion. Food Res. Int. 2015, 65, 109–114. [Google Scholar] [CrossRef]
- Rumsey, S.C.; Levine, M. Absorption, Transport, and Disposition of Ascorbic Acid in Humans. J. Nutr. Biochem. 1998, 9, 116–130. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Borel, P. Overview of Carotenoid Bioavailability Determinants: From Dietary Factors to Host Genetic Variations. Trends Food Sci. Technol. 2017, 69, 270–280. [Google Scholar] [CrossRef]
- USDA Food Safety and Inspection Service U.S Department of Agriculture. Available online: https://www.fsis.usda.gov (accessed on 10 October 2024).
Samples | MDD (nm) | PDI | Viscosity (cP) | Whiteness |
---|---|---|---|---|
OPO nanoemulsion | 286.6 ± 10 x | 0.276 ± 0.01 y | 19.7 ± 1.77 z | 16.27 ± 1.46 a |
OPO-AA nanoemulsion | 289.2 ± 10.1 x | 0.248 ± 0.009 y | 32.7 ± 2.62 z | 20.91 ± 1.67 b |
CLA nanoemulsion | 275.8 ± 9.7 x | 0.266 ± 0.009 y | 16.1 ± 1.13 z | 11.94 ± 0.84 a |
CLA-AA nanoemulsion | 269.8 ± 9.4 x | 0.244 ± 0.009 y | 22.6 ± 1.36 z | 14.26 ± 0.86 b |
SO nanoemulsion | 258.7 ± 9.1 x | 0.276 ± 0.009 y | 20.4 ± 1.43 z | 38.68 ± 2.71 a |
SO-AA nanoemulsion | 251.2 ± 8.8 x | 0.244 ± 0.02 y | 22.8 ± 2.28 z | 35.42 ± 3.54 b |
CO nanoemulsion | 264.9 ± 9.3 x | 0.263 ± 0.06 y | 18.3 ± 1.56 z | 47.10 ± 4.00 a |
CO-AA nanoemulsion | 274.4 ± 9.6 x | 0.252 ± 0.07 y | 23.9 ± 1.55 z | 45.75 ± 2.97 b |
FO nanoemulsion | 259.3 ± 9.1 x | 0.200 ± 0.05 y | 18.7 ± 1.27 z | 36.17 ± 2.46 a |
FO-AA nanoemulsion | 278.9 ± 9.8 x | 0.190 ± 0.01 y | 21 ± 1.58 z | 39.2 ± 2.94 b |
Samples | MDD (nm) | PDI |
---|---|---|
OPO-AA nanoemulsion | 307.5 ± 10.5 x | 0.268 ± 0.006 y |
CLA-AA nanoemulsion | 282.2 ± 4.8 | 0.254 ± 0.002 y |
SO-AA nanoemulsion | 287.9 ± 6.3 x | 0.254 ± 0.04 y |
CO-AA nanoemulsion | 280.4 ± 5.8 x | 0.262 ± 0.08 y |
FO-AA nanoemulsion | 270.4 ± 10.2 x | 0.200 ± 0.05 y |
Deterioration Rate, k (d−1) | ||||||
---|---|---|---|---|---|---|
Samples | pH = 2 | pH = 5 | pH = 7 | |||
25 °C | 4 °C | 25 °C | 4 °C | 25 °C | 4 °C | |
OPO nanoemulsion | −4.30 × 10−2 axi | −9.94 × 10−3 axii | −6.93 × 10−2 axi | −1.64 × 10−2 axii | −2.44 × 10−2 axi | −6.14 × 10−3 axii |
OPO-AA nanoemulsion | −1.51× 10−2 ayi | −1.29 × 10−2 ayii | −1.87 × 10−2 ayi | −1.71 × 10−2 ayii | −1.56 × 10−2 ayi | −1.39 × 10−2 ayii |
CLA nanoemulsion | −5.47× 10−2 a xi | −3.72 × 10−2 axii | −6.26 × 10−2 axi | −1.34 × 10−2 axii | −4.79 × 10−2 ax i | −1.68 × 10−2 axii |
CLA-AA nanoemulsion | −1.84 × 10−2 ayi | −8.22 × 10−3 ayii | −8.59 × 10−3 ayi | −9.24 × 10−3 ayii | −8.22 × 10−3 ayi | −5.67 × 10−3 ayii |
SO nanoemulsion | −5.63 × 10−2 axi | −1.64 × 10−2 axii | −3.46 × 10−2 axi | −1.80 × 10−2 axii | −2.93 × 10−2 axi | −1.41 × 10−2 axii |
SO-AA nanoemulsion | −1.25 × 10−2 ayi | −1.16 × 10−2 ayii | −1.78 × 10−2 ayi | −1.24 × 10−2 ayii | −1.65 × 10−2 ayi | −9.61 × 10−3 ayi |
CO nanoemulsion | −7.42 × 10−2 bxi | −6.54 × 10−2 bxii | −1.63 × 10−2 bxi | −6.96 × 10−2 bxii | −8.57 × 10−2 bxi | −3.17 × 10−2 bxii |
CO-AA nanoemulsion | −1.66 × 10−2 byi | −1.12 × 10−2 byii | −1.06 × 10−2 byi | −2.01 × 10−2 byii | −3.17 × 10−2 byi | −1.36 × 10−2 byii |
FO nanoemulsion | −5.78 × 10−2 bxi | −1.24 × 10−2 bxii | −4.29 × 10−2 bxi | −1.33 × 10−2 bxii | −5.79 × 10−2 bxi | −1.16 × 10−2 bxii |
FO-AA nanoemulsion | −3.32 × 10−2 byi | −9.85 × 10−3 byii | −1.52 × 10−2 byi | −1.08 × 10−2 byii | −1.17 × 10−2 byi | −9.14 × 10−3 byii |
Whiteness Index | ||||||
---|---|---|---|---|---|---|
Samples | pH = 2 | pH = 5 | pH = 7 | |||
25 °C | 4 °C | 25 °C | 4 °C | 25 °C | 4 °C | |
OPO nanoemulsion | 49.30 ± 2.7 axi | 23.92 ± 1.3 axii | 58.21 ± 3.2 axi | 28.46 ± 1.6 axii | 28.40 ± 1.6 axi | 39.79 ± 2.2 axii |
OPO-AA nanoemulsion | 23.69 ± 1.3 ayi | 26.79 ± 3.2 ayi | 24.16 ± 1.3 ayi | 27.52 ± 1.5 ayii | 27.06 ± 1.5 ayi | 22.75 ± 1.3 ayii |
CLA nanoemulsion | 54.65 ± 3.0 axi | 20.67 ± 2.4 axii | 43.35 ± 2.4 axi | 23.25 ± 1.3 axii | 47.30 ± 2.6 axi | 21.38 ± 1.2 axii |
CLA-AA nanoemulsion | 32.31 ± 1.8 ayi | 25.91 ± 1.1 ayii | 20.45 ± 1.1 ayi | 24.18 ± 1.3 ayii | 23.96 ± 1.3 ayi | 26.10 ± 1.4 ayii |
SO nanoemulsion | 58.72 ± 3.2 bxi | 36.59 ± 1.4 bxii | 45.37 ± 2.5 bxi | 41.29 ± 2.3 bxii | 43.85 ± 2.4 bxi | 42.21 ± 2.3 bxii |
SO-AA nanoemulsion | 37.44 ± 2.1 byi | 21.18 ± 2.0 byii | 31.9 ± 1.8 byi | 38.43 ± 2.1 byii | 27.59 ± 1.5 byi | 43.35 ± 2.4 byii |
CO nanoemulsion | 60.10 ± 3.3 cxi | 44.66 ± 1.2 cxii | 53.39 ± 2.9 cxi | 43.31 ± 2.4 cxii | 62.90 ± 3.5 cxi | 45.58 ± 2.5 cxii |
CO-AA nanoemulsion | 50.06 ± 2.8 cyi | 48.40 ± 2.5 cyii | 48.14 ± 2.6 cyi | 50.52 ± 2.8 cyii | 49.29 ± 2.7 cyi | 54.15 ± 3.0 cyii |
FO nanoemulsion | 44.28 ± 2.4 cxi | 37.36 ± 2.7 cxii | 59.16 ± 3.3 cxi | 36.55 ± 2.0 cxii | 53.68 ± 3.0 cxi | 50.30 ± 2.8 cxii |
FO-AA nanoemulsion | 40.37 ± 2.2 cyi | 42.30 ± 2.1 cyii | 39.31 ± 2.2 cyi | 44.70 ± 2.5 cyii | 44.39 ± 2.4 cyi | 41.25 ± 2.3 cyii |
Samples | MDD (nm) | PDI | Turbidity | Viscosity (cP) | Whiteness |
---|---|---|---|---|---|
OPO-AA_ph | 307.9 ± 15.0 a | 0.276 ± 0.01 x | 0.506 ± 0.046 y | 19.7 ± 1.77 z | 16.27 ± 1.46 w |
CLA-AA_ph | 331.8 ± 11.4 a | 0.266 ± 0.009 x | 0.535 ± 0.037 y | 16.1 ± 1.13 z | 11.94 ± 0.84 w |
SO-AA_ph | 317.7 ± 7.7 a | 0.276 ± 0.009 x | 0.404 ± 0.028 y | 20.4 ± 1.43 z | 38.68 ± 2.71 w |
CO-AA_ph | 259.5 ± 5.5 b | 0.263 ± 0.06 x | 0.401 ± 0.034 y | 18.3 ± 1.56 z | 47.10 ± 4.00 w |
FO-AA_ph | 246.4 ± 8.4 b | 0.200 ± 0.05 x | 0.387 ± 0.026 y | 18.7 ± 1.27 z | 36.17 ± 2.46 w |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsouli, M.; Thanou, I.V.; Raftopoulou, E.; Ntzimani, A.; Taoukis, P.; Giannakourou, M.C. Bioaccessibility and Stability Studies on Encapsulated Phenolics and Carotenoids from Olive and Tomato Pomace: Development of a Functional Fruit Beverage. Appl. Sci. 2024, 14, 10495. https://doi.org/10.3390/app142210495
Katsouli M, Thanou IV, Raftopoulou E, Ntzimani A, Taoukis P, Giannakourou MC. Bioaccessibility and Stability Studies on Encapsulated Phenolics and Carotenoids from Olive and Tomato Pomace: Development of a Functional Fruit Beverage. Applied Sciences. 2024; 14(22):10495. https://doi.org/10.3390/app142210495
Chicago/Turabian StyleKatsouli, Maria, Ioanna V. Thanou, Evgenia Raftopoulou, Athina Ntzimani, Petros Taoukis, and Maria C. Giannakourou. 2024. "Bioaccessibility and Stability Studies on Encapsulated Phenolics and Carotenoids from Olive and Tomato Pomace: Development of a Functional Fruit Beverage" Applied Sciences 14, no. 22: 10495. https://doi.org/10.3390/app142210495
APA StyleKatsouli, M., Thanou, I. V., Raftopoulou, E., Ntzimani, A., Taoukis, P., & Giannakourou, M. C. (2024). Bioaccessibility and Stability Studies on Encapsulated Phenolics and Carotenoids from Olive and Tomato Pomace: Development of a Functional Fruit Beverage. Applied Sciences, 14(22), 10495. https://doi.org/10.3390/app142210495