Elastocaloric Performance of Natural Rubber in Solid State Cooling: Evaluation of the Effect of Crosslinking Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Sample Preparation
2.3. Characterization
2.3.1. Physical Properties
2.3.2. Thermal Properties
2.3.3. Mechanical Properties
2.3.4. Evaluation of the Elastocaloric Effect
3. Results
3.1. Physical Properties
3.2. Thermal Properties
3.3. Mechanical Properties
3.4. Evaluation of the Elastocaloric Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alamgir, W.; Shan, H. The Multifaceted Consequences of Climate Change on Human Health. Life Sci. 2023, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Sillmann, J.; Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, Y.; Wei, W.; Fang, G.; Duan, W. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- Baldwin, J.W.; Dessy, J.B.; Vecchi, G.A.; Oppenheimer, M. Temporally Compound Heat Wave Events and Global Warming: An Emerging Hazard. Earths Future 2019, 7, 411–427. [Google Scholar] [CrossRef]
- Birol, F. The Future of Cooling. Opportunities for Energy-Efficient Air Conditioners. International Energy Agency. Available online: https://www.iea.org/reports/the-future-of-cooling (accessed on 15 March 2024).
- Prabakaran, R.; Lal, D.M.; Kim, S.C. A state of art review on future low global warming potential refrigerants and performance augmentation methods for vapour compression based mobile air conditioning system. J. Therm. Anal. Calorim. 2023, 148, 417–449. [Google Scholar] [CrossRef]
- Davis, L.W.; Gertler, P.J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA 2015, 112, 5962–5967. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.R.; Khan, N.; Haider, A.; Saleem, Z.; Saleem, M.S. Natural and synthetic refrigerants, global warming: A review. Renew. Sustain. Energy Rev. 2018, 90, 557–569. [Google Scholar] [CrossRef]
- Xie, Z.; Sebald, G.; Guyomar, D. Comparison of elastocaloric effect of natural rubber with other caloric effects on different-scale cooling application cases. Appl. Therm. Eng. 2017, 111, 914–926. [Google Scholar] [CrossRef]
- Priyadarshan, P.M. Biology of Hevea Rubber, 1st ed.; Springer International Publishing: Cham, Switzerland; Wallingford, UK, 2017. [Google Scholar]
- Bennacer, R.; Liu, B.; Yang, M.; Chen, A. Refrigeration performance and the elastocaloric effect in natural and synthetic rubbers. Appl. Therm. Eng. 2022, 204, 117938. [Google Scholar] [CrossRef]
- Coativity, G.; Haissoune, H.; Seveyrat, L.; Sebald, G.; Chazeau, L.; Chenal, J.-M.; Lebrun, L. Elastocaloric properties of thermoplastic polyurethane. Appl. Phys. Lett. 2020, 117, 193903. [Google Scholar] [CrossRef]
- Trabelsi, S.; Albouy, P.A.; Rault, J. Crystallization and Melting Processes in Vulcanized Stretched Natural Rubber. Macromolecules 2003, 36, 7624–7639. [Google Scholar] [CrossRef]
- Tosaka, M.; Murakami, S.; Poompradub, S.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Benjamin, S.H. Orientation and Crystallization of Natural Rubber Network As Revealed by WAXD Using Synchrotron Radiation. Macromolecules 2004, 37, 3299–3309. [Google Scholar] [CrossRef]
- Candau, N.; Laghmach, R.; Chazeau, L.; Chenal, J.M.; Gauthier, C.; Biben, T.; Munch, E. Strain-Induced Crystallization of Natural Rubber and Cross-Link Densities Heterogeneities. Macromolecules 2014, 47, 5815–5824. [Google Scholar] [CrossRef]
- Toki, S.; Fujimaki, T.; Okuyama, M. Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. Polymer 2000, 41, 5423–5429. [Google Scholar] [CrossRef]
- Xie, Z.; Sebald, G.; Guyomar, D. Temperature dependence of the elastocaloric effect in natural rubber. Phys. Lett. A 2017, 381, 2112–2116. [Google Scholar] [CrossRef]
- Candau, N.; Vives, E.; Fernández, A.I.; Maspoch, M.L. Elastocaloric effect in vulcanized natural rubber and natural/wastes rubber blends. Polymer 2021, 236, 124309. [Google Scholar] [CrossRef]
- Candau, N.; Zimny, A.; Vives, E.; Maspoch, M.L. Elastocaloric Waste/Natural Rubber Materials with Various Crosslink Densities. Polymers 2023, 15, 2566. [Google Scholar] [CrossRef]
- Yukihiro, Y. Effet Élastocalorique Dans Le Caoutchouc Naturel Et Le Terpolymère: Mécanismes Responsables De La Variation De Température Et Bilan Énergétique Sous Deformation. Ph.D. Thesis, Universitè de Lion, Lyon, France, 2016. [Google Scholar]
- Gonzales, L.; Rodriguez, A.; Valentin, J.L. Conventional and Efficient Crosslinking of Natural Rubber Effect of Heterogeneities on the Physical Properties. Elastomer Plast. 2005, 58, 638–643. [Google Scholar]
- ASTM 3182; Standard Practice for Rubber-Materials, Equipment, and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized Sheets. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D792; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D6814; Test Method for Determination of Percent Devulcanization of Crumb Rubber Based on Crosslink Density. ASTM International, Texas Tech Univ.: Lubbock, TX, USA, 2018.
- ASTM D2240; Standard Test Method for Rubber Property-Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM-E 1461; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D412; Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. ASTM International, North Carolina A.: Greensboro, NC, USA, 2021.
- Gullì, I.G.; Galvagno, S. Sviluppo Di Un Innovativo Materiale Adsorbente Per Applicazioni Nel Settore Delle Macchine Ad Adsorbimento. Ph.D. Thesis, University of Messina, Messina, Italy, 2017. [Google Scholar]
- Fu, W.; Wang, L.; Huang, J.; Liu, C.; Peng, W.; Xiao, H.; Li, S. Mechanical Properties and Mullins Effect in Natural Rubber Reinforced by Grafted Carbon Black. Adv. Polym. Technol. 2019, 2019, 4523696. [Google Scholar] [CrossRef]
- Diani, J.; Fayolle, B.; Gilormini, P. A review on the Mullins effect. Eur. Polym. J. 2009, 45, 601–612. [Google Scholar] [CrossRef]
- John, H.L., IV; John, H.L., V. Engineering Heat Transfer, 5th ed.; Phlogiston Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Cesare, B.; Alberto, C.; Lino, M. Trasmissione del Calore; CLEUP Editore: Padova, Italy, 1989; pp. 116–120. [Google Scholar]
- Mark, J.E. Polymer Data Handbook; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Huneau, B. Strain-induced crystallization of natural rubber: A review of x-ray diffraction investigations. Rubber Chem. Technol. 2011, 84, 425–452. [Google Scholar] [CrossRef]
- Zhao, F.; Bi, W.; Zhao, S. Influence of Crosslink Density on Mechanical Properties of Natural Rubber Vulcanizates. J. Macromol. Sci. Part B 2011, 50, 1460–1469. [Google Scholar] [CrossRef]
- Boyce, M.C.; Arruda, E.M. Constitutive Models of Rubber Elasticity: A Review. Rubber Chem. Technol. 2000, 73, 504–523. [Google Scholar] [CrossRef]
- Van Wijk, M. Diagnosi Pressione e Temperatura Aria Condizionata. MVW Autotechniek. Alles over Autotechniek. Available online: https://www.mvwautotechniek.nl/it/diagnose-airconditioning-druk-en-temperatuur/ (accessed on 15 March 2024).
- Tsenoglou, C. Rubber elasticity of cross-linked networks with trapped entanglements and dangling chains. Macromolecules 1989, 22, 284–289. [Google Scholar] [CrossRef]
- Qian, M.; Zou, B.; Chen, Z.; Huang, W.; Wang, X.; Tang, B.; Liu, Q.; Zhu, Y. The Influence of Filler Size and Crosslinking Degree of Polymers on Mullins Effect in Filled NR/BR Composites. Polymers 2021, 13, 2284. [Google Scholar] [CrossRef]
- Wang, K.; Engelbrecht, K.; Bahl, C.R.H. Additive manufactured thermoplastic elastomers for low-stress driven elastocaloric cooling. Appl. Mater. Today 2023, 30, 101711. [Google Scholar] [CrossRef]
- Bird, R.B. Transport Phenomena; Revised Second Edition; Wiley: New York, NY, USA, 2007. [Google Scholar]
Sample | SMR 10 (phr) | Sulfur (phr) | ZnO (phr) | Stearic Acid (phr) | ZDBC (phr) |
---|---|---|---|---|---|
NR_1.5S | 100 | 1.5 | 5.0 | 2.0 | 0.7 |
NR_2.5S | 100 | 2.5 | 5.0 | 2.0 | 0.7 |
NR_3.5S | 100 | 3.5 | 5.0 | 2.0 | 0.7 |
Stage | Process/Ingredients | Time |
---|---|---|
I | Mastication of NR | 5 |
II | ZnO | 1 |
III | Stearic Acid | 1 |
IV | ZDBC | 1 |
V | Sulfur | 1 |
VI | Mixing for homogenization | 2 |
Sample | Crosslinking Density (mol·10−4/cm3) | Density (g/cm3) | Shore A |
---|---|---|---|
NR_1.5S | 2.94 ± 0.21 | 0.958 ± 0.006 | 35.9 ± 1.1 |
NR_2.5S | 4.04 ± 0.22 | 0.968 ± 0.005 | 41.3 ± 0.7 |
NR_3.5S | 5.24 ± 0.51 | 0.981 ± 0.007 | 43.9 ± 1.3 |
1st Heating Scan | Cooling Scan | 2nd Heating Scan | |
---|---|---|---|
Sample | Tg (°C) | Tg (°C) | Tg (°C) |
NR_1.5S | −67.7 | −73.3 | −67.4 |
NR_2.5S | −66.6 | −73.5 | −66.9 |
NR_3.5S | −65.9 | −72.0 | −65.4 |
Sample | Crosslinking Density (mol·10−4/cm3) | Specific Heat Capacity (J/g·K) | Thermal Diffusivity (mm2/s) | Thermal Conductivity (W/m·k) |
---|---|---|---|---|
NR_1.5S | 2.94 ± 0.21 | 1.704 ± 0.049 | 0.081 ± 0.001 | 0.132 ± 0.003 |
NR_2.5S | 4.04 ± 0.22 | 1.822 ± 0.063 | 0.081 ± 0.002 | 0.143 ± 0.006 |
NR_3.5S | 5.24 ± 0.51 | 1.775 ± 0.044 | 0.082 ± 0.001 | 0.143 ± 0.004 |
Sample | E (MPa) | σ200% (MPa) | σ400% (MPa) | σb (MPa) | εb (%) |
---|---|---|---|---|---|
NR_1.5S | 2.94 ± 0.21 | 1.704 ± 0.049 | 0.081 ± 0.001 | 0.132 ± 0.003 | 730 ± 14 |
NR_2.5S | 4.04 ± 0.22 | 1.822 ± 0.063 | 0.081 ± 0.002 | 0.143 ± 0.006 | 573 ± 79 |
NR_3.5S | 5.24 ± 0.51 | 1.775 ± 0.044 | 0.082 ± 0.001 | 0.143 ± 0.004 | 523 ± 47 |
Physical Parameter | Sample | Maximum Deformation | ||
---|---|---|---|---|
300% | 400% | 500% | ||
τc stretching phase (s) | NR_1.5S | 18.3 | 20.4 | 17.2 |
NR_2.5S | 21.1 | 21.1 | 17.1 | |
NR_3.5S | 22.3 | 20.7 | 23.9 | |
τc stretching phase (s) | NR_1.5S | 51.8 | 57.8 | 57.1 |
NR_2.5S | 39.8 | 56.6 | 62.3 | |
NR_3.5S | 58.6 | 53.6 | 62.1 | |
h stretching phase (W/(m2K)) | NR_1.5S | 12.6 | 11.3 | 13.4 |
NR_2.5S | 21.1 | 21.1 | 17.1 | |
NR_3.5S | 22.3 | 20.7 | 23.9 | |
h retraction phase (W/(m2K)) | NR_1.5S | 17.8 | 15.9 | 16.1 |
NR_2.5S | 24.9 | 17.5 | 15.9 | |
NR_3.5S | 17.0 | 18.6 | 16.1 |
Caloric Material | Δε (mm/mm) | ΔTcool/Δσ (°C/MPa) | ΔT/Δε (°C) |
---|---|---|---|
NR_1.5S | 5 | 3.2 | 2.1 |
Shape memory alloys (SMAs) | 0.03–0.05 | 0.013–0.045 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, M.; Fambri, L.; Fredi, G.; Pegoretti, A.; Dorigato, A. Elastocaloric Performance of Natural Rubber in Solid State Cooling: Evaluation of the Effect of Crosslinking Density. Appl. Sci. 2024, 14, 10525. https://doi.org/10.3390/app142210525
Bianchi M, Fambri L, Fredi G, Pegoretti A, Dorigato A. Elastocaloric Performance of Natural Rubber in Solid State Cooling: Evaluation of the Effect of Crosslinking Density. Applied Sciences. 2024; 14(22):10525. https://doi.org/10.3390/app142210525
Chicago/Turabian StyleBianchi, Marica, Luca Fambri, Giulia Fredi, Alessandro Pegoretti, and Andrea Dorigato. 2024. "Elastocaloric Performance of Natural Rubber in Solid State Cooling: Evaluation of the Effect of Crosslinking Density" Applied Sciences 14, no. 22: 10525. https://doi.org/10.3390/app142210525
APA StyleBianchi, M., Fambri, L., Fredi, G., Pegoretti, A., & Dorigato, A. (2024). Elastocaloric Performance of Natural Rubber in Solid State Cooling: Evaluation of the Effect of Crosslinking Density. Applied Sciences, 14(22), 10525. https://doi.org/10.3390/app142210525