Ecological and Health Risks from Trace Elements Contamination in Soils at the Rutile Bearing Area of Akonolinga, Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Preparation
2.3. Identification of Trace Elements
2.4. Assessment of Environmental Contamination by Trace Elements
2.4.1. Geo-Accumulation Index (Igeo) and Enrichment Factor (EF)
2.4.2. Contamination Factor CF
- CF < 1: Low contamination;
- 1 < CF < 3: Moderate contamination;
- 3 < CF < 6: Considerable contamination;
- CF ≥ 6: Very high contamination.
2.4.3. Individual Ecological Risk Index (Ei) and Potential Ecological Risk Index (RI)
2.5. Pearson Correlation
2.6. Health Risk Assessment of Trace Elements in Soil Using RSL of USEPA
- ≤10−6: Low carcinogenic risk;
- 10−4 à 10−3: Moderate carcinogenic risk;
- 10−3 à 10−1: High carcinogenic risk;
- ≥10−1: Very high carcinogenic risk.
3. Results and Discussion
3.1. Trace Elements Concentrations
3.2. Assessment of Contamination Parameters
3.3. Assessment of Pearson Correlation
3.4. Assessments of Carcinogenic and Non-Carcinogenic Risks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. Heavy Metals IntechOpen 2018, 10, 115–133. [Google Scholar] [CrossRef]
- Martin, Y.E.; Johnson, E.A. Biogeosciences survey: Studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Prog. Phys. Geogr. 2012, 36, 833–852. [Google Scholar] [CrossRef]
- Blanchard, D.G.; Louis, N.E.; Abdourahimi; Daniel, B.; Saïdou; Ndjana Nkoulou, J.E., II; Boniface, K.; Kwato Ndjock, M.G. Environmental Pollution by Heavy Metals in the Gold Mining Region of East Cameroon. Am. J. Environ. Sci. 2018, 14, 212–225. [Google Scholar] [CrossRef]
- Manna, A.; Maiti, R. Geochemical contamination in the mine-affected soil of Raniganj Coalfield—A river basin scale assessment. Geosci. Front. 2018, 9, 1577–1590. [Google Scholar] [CrossRef]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Efremova Aaron, S.; Aaron, J.J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 2020, 27, 29927–29942. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, J.; Du, B.; Liu, H.; Zhang, W.; Liang, J.; Zhang, W.; You, L.; Zhou, J. Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China. Ecotoxicol. Environ. Saf. 2019, 171, 329–336. [Google Scholar] [CrossRef]
- Bai, H.; Hu, B.; Wang, C.; Bao, S.; Sai, G.; Xu, X.; Li, Y. Assessment of radioactive materials and heavy metals in the surface soil around the Bayanwula prospective uranium mining area in China. Int. J. Environ. Res. Public Health 2017, 14, 300. [Google Scholar] [CrossRef]
- Gondji, D.S.; Lawan, L.M.; Guembou, C.J.; Beyala, J.F.; Saïdou. Assessment of trace elements pollution and their potential health risks in the cobalt–nickel bearing areas of Lomié, East Cameroon. Environ. Monit. Assess. 2022, 194, 127. [Google Scholar] [CrossRef]
- Njayou, M.M.; Ngounouno, A.M.; Ngounouno, I. Trace metal contamination status in soils of the abandoned gold mining district of Bindiba (East Cameroon): Pollution indices assessment, multivariate analysis, and geostatistical approach. J. Environ. Health Sci. Eng. 2022, 21, 143–155. [Google Scholar] [CrossRef]
- Agenceecofin.com. Le Français Eramet Obtient des Permis de Recherches sur le Bloc Rutilifère d’Akonolinga. Available online: https://www.agenceecofin.com/mines (accessed on 15 August 2023).
- Iswarya, V.; Bhuvaneshwari, M.; Alex, S.A.; Iyer, S.; Chaudhuri, G.; Chandrasekaran, P.T.; Bhalerao, G.M.; Chakravarty, S.; Raichur, A.M.; Chandrasekaran, N.; et al. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat. Toxicol. 2015, 161, 54–69. [Google Scholar] [CrossRef]
- Barmo, C.; Ciacci, C.; Canonico, B.; Fabbri, R.; Cortese, K.; Balbi, T.; Marcomini, A.; Pojana, G.; Gallo, G.; Canesi, L. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2013, 132–133, 9–18. [Google Scholar] [CrossRef] [PubMed]
- PCD. Plan Communal de Développement d’Akonolinga, Tome 1. 2013. Available online: https://www.pndp.org/documents/02_PCD_Akonolinga1.pdf (accessed on 8 September 2023).
- TERMES-DE-REFERENCE. Available online: https://www.minmidt.cm/textes-legislatifs/ (accessed on 8 September 2023).
- MINTP, Data of Ministry of Publics Works Cameroon. 2024. Available online: http://sig.mintp.cm/ (accessed on 25 July 2024).
- Oumar Bobbo, M.; Saïdou; Ndjana Nkoulou, J.E., II; Suzuki, T.; Kudo, H.; Hosoda, M.; Tokonami, S. Occupational natural radiation exposure at the uranium deposit of Kitongo, Cameroon. Radioisotopes 2019, 68, 621–630. [Google Scholar] [CrossRef]
- Seklaoui, M.; Boutaleb, A.; Benali, H.; Alligui, F.; Prochaska, W. Environmental assessment of mining industry solid pollution in the mercurial district of Azzaba, northeast Algeria. Environ. Monit. Assess. 2016, 188, 621. [Google Scholar] [CrossRef]
- Loredo, J.; Ordóñez, A.; Álvarez, R. Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). J. Hazard. Mater. 2006, 136, 455–467. [Google Scholar] [CrossRef]
- Golia, E.E.; Emmanouil, C.; Charizani, A.; Koropouli, A.; Kungolos, A. Assessment of Cu and Zn contamination and associated human health risks in urban soils from public green spaces in the city of Thessaloniki, Northern Greece. Euro-Mediterr. J. Environ. Integr. 2023, 8, 517–525. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Bao, H.; Liu, X.; Xu, C.; Zhao, Y.; Liu, D.; Yu, H. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): Spatial distribution, mobility behavior, and health risk. Environ. Sci. Pollut. Res. 2017, 24, 19749–19766. [Google Scholar] [CrossRef]
- Balls, P.W.; Hull, S.; Miller, B.S.; Pirie, J.M.; Proctor, W. Trace metal in Scottish estuarine and coastal sediments. Mar. Pollut. Bull. 1997, 34, 42–50. [Google Scholar] [CrossRef]
- Lee, C.L.; Fang, M.D.; Hsieh, M.T. Characterization and distribution of metals in surficial sediments in Southwestern Taiwan. Mar. Pollut. Bull. 1998, 36, 464–471. [Google Scholar] [CrossRef]
- Barbieri, M.; Sappa, G.; Vitale, S.; Parisse, B.; Battistel, M. Soil control of trace metals concentrations in landfill: A case study of the largest landfill in Europe, Malagrotta, Rome. J. Geochem. Explor. 2014, 143, 146–154. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Modabberi, S.; Tashakor, M.; Soltani, N.S.; Hursthouse, A.S. Potentially toxic elements in urban soils: Source apportionment and contamination assessment. Environ. Monit. Assess. 2018, 190, 715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, Z.G.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Cui, F.; Zhu, M.; Shen, L.y.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Müller, G. Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau 1979, 79, 778–783. [Google Scholar]
- Müller, G. Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chemiker Zeitung. 1981, 105, 157–164. [Google Scholar]
- Jamshidi-Zanjani, A.; Saeedi, M. Multivariate analysis and geochemical Approach for assessment of metal pollution in state in sediment cores. Environ. Sci. Pollut. Res. 2017, 24, 289–304. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. An Assessment of Radiological Hazards from Gold Mine Tailings in the Province of Gauteng in South Africa. Int. J. Environ. Res. Public Health 2016, 13, 138. [Google Scholar] [CrossRef]
- Javed, T.; Ahmad, N.; Mashiatullah, A. Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake, Pakistan. Pol. J. Environ. Stud. 2018, 27, 675–688. [Google Scholar] [CrossRef]
- Rastmanesh, F.; Moore, F.; Kopaei, M.K.; Keshavarzi, B.; Behrouz, M. Heavy metal enrichment of soil in Sarcheshmeh copper complex, Kerman, Iran. Environ. Earth Sci. 2011, 62, 329–336. [Google Scholar] [CrossRef]
- Yi, S.M.; Lee, E.; Holsen, T.M. Dry deposition fluxes and size distributions of heavy metals in Seoul, Korea during yellow-sand events. Aerosol. Sci. Technol. 2001, 35, 569–576. [Google Scholar] [CrossRef]
- Kolawole, T.O.; Olatunji, A.S.; Jimoh, M.T.; Fajemila, O.T. Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria. J. Health Pollut. 2018, 8, 180906. [Google Scholar] [CrossRef] [PubMed]
- Shahriyari, J.; Rezaei, M.R.; Kamani, H.; Anari, M.H.S. Carcinogenic and Non-Carcinogenic Risk Assessment of Heavy Metals in drinking tap water in Zabol city, Iran. J. Neyshabur Univ. Med. Sci. 2020, 8, 59–75. [Google Scholar]
- EPA (US Environmental Protection Agency). Regional Screening Levels (RSLs)—User’s Guide Regional Screening Levels (RSLs) November. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls (accessed on 12 August 2023).
- Hu, B.; Wang, J.; Jin, B.; Li, Y.; Shi, Z. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environ. Sci. Pollut. Res. 2017, 24, 19816–19826. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Chiroma, T.M.; Ebewele, R.O.; Hymore, F. Comparative assessment of heavy metal levels in soil, vegetables, and urban grey water used for irrigation in Yola and Kano. Int. Ref. J. Eng. Sci. 2014, 3, 1–9. [Google Scholar]
- Ezejiofor, N. Environmental metals pollutants load of a densely populated and heavily industrialized commercial city of Aba, Nigeria. J. Toxicol. Environ. Health Sci. 2013, 5, 1–11. [Google Scholar] [CrossRef]
- Anderson, A.C. Iron poisoning in children. Curr. Opin. Pediatr. 1994, 6, 289–294. [Google Scholar] [CrossRef]
- WHO. World Health Organization. Permissible Limits of Heavy Metals in Soil and Plants; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- US CDC; Advisory Committee on Childhood Lead Poisoning Prevention. CDC Updates Blood Lead Reference Value to 3.5 µg/dL; US Centres for Disease Control and Prevention: Atlanta, GA, USA, 2021. Available online: https://www.cdc.gov/niosh/lead/index.html (accessed on 12 September 2023).
- McGregor, D.B.; Baan, R.A.; Partensky, C.; Rice, J.M.; Wilbourn, J.D. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies—A report of an IARC Monographs Programme Meeting. International Agency for Research on Cancer. Eur. J. Cancer 2000, 36, 307–313. [Google Scholar] [CrossRef]
- Seilkop, S.K.; Oller, A.R. Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharm. 2003, 37, 173–190. [Google Scholar] [CrossRef]
- Zambelli, B.; Uversky, V.N.; Ciurli, S. Nickel impact on human health: An intrinsic disorder perspective. BBA Proteins Proteom. 2016, 1864, 1714–1731. [Google Scholar] [CrossRef]
- Jose, C.C.; Jagannathan, L.; Tanwar, V.S.; Zhang, X.; Zang, C.; Cuddapah, S. Nickel exposure induces a persistent mesenchymal phenotype in human lung epithelial cells through epigenetic activation of ZEB1. Mol. Carcinog. 2018, 57, 794–806. [Google Scholar] [CrossRef] [PubMed]
- Kurt, O.K.; Basaran, N. Occupational Exposure to Metals and Solvents: Allergy and Airway Diseases. Curr. Allergy Asthma Rep. 2020, 20, 38. [Google Scholar] [CrossRef]
- Alvarez, C.C.; Bravo, G.M.E.; Hernandez, Z.A. Hexavalent chromium: Regulation and health effects. J. Trace Elem. Med. Biol. 2021, 65, 126729. [Google Scholar] [CrossRef] [PubMed]
- Behrens, T.; Ge, C.; Vermeulen, R.; Kendzia, B.; Olsson, A.; Schuz, J.; Kromhout, H.; Pesch, B.; Peters, S.; Portengen, L.; et al. Occupational exposure to nickel and hexavalent chromium and the risk of lung cancer in a pooled analysis of case-control studies (SYNERGY). Int. J. Cancer Res. 2023, 152, 645–660. [Google Scholar] [CrossRef]
- Ropers, M.H.; Terrisse, H.; Mercier-Bonin, M.; Humbert, B. Titanium dioxide as food additive. In Application of Titanium Dioxide; Janus, M., Ed.; InTech: Rijeka, Croatia, 2017; pp. 3–4. [Google Scholar] [CrossRef]
- Medina-Reyes, E.I.; Delgado-Buenrostro, N.L.; Díaz-Urbina, D.; Rodríguez-Ibarra, C.; Déciga-Alcaraz, A.; González, M.I.; Reyes, J.L.; Villamar-Duque, T.E.; Flores-Sánchez, M.L.; Hernández-Pando, R.; et al. Food-grade titanium dioxide (E171) induces anxiety, adenomas in colon and goblet cells hyperplasia in a regular diet model and microvesicular steatosis in a high fat diet model. Food Chem. Toxicol. 2020, 146, 111786. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2010; Volume 93, pp. 1–413. [Google Scholar]
- Ye, L.; Lompo, D.J.P.; Sako, A.; Nacro, H.B. Evaluation of Trace Metal Content in Soils Subjected to Inputs of Solid Urban Wastes. Int. J. Biol. Chem. Sci. 2012, 14, 3361–3371. [Google Scholar] [CrossRef]
- Abdourahamane, T.D.B.; Yadji, G.; Nomaou, D.L.; Ousseini, Z.I.; Jean Marie, K.A.; Cyril, F.; Thibault, S. Spatialization of the Pollution by Metallic Trace Elements of the Soils of the Valley of Gouti Yena Niamey; Tome XVII-A, 2nd Semester; Anal Abdou Moumouni University: Niamey, Niger, 2014; pp. 179–191. [Google Scholar]
- Emile, T.; Honorine, N.T.; Hans-Rudolf, P.; Njine, T. Teneurs en éléments majeurs et oligoéléments dans un sol et quelques cultures maraîchères de la ville de Dschang, Cameroun. Afr. Crop Sci. J. 2015, 23, 35–44. [Google Scholar]
- Kouakou, K.J.; Gogbeu, S.J.; Sika, A.E.; Yao, K.B.; Bounakhla, M.; Zahry, F.; Tahri, M.; Dogbo, D.O.; Bekro, Y.A. Caractérisation physico-chimique des horizons de surface de sols à maraîchers dans la ville d’Abidjan (Côte d’Ivoire). Int. J. Biol. Chem. Sci. 2019, 13, 1193–1200. [Google Scholar] [CrossRef]
- Ekengele, N.L.; Mabrey, S.S.; Zo’o, Z.P. Assessment of metal contamination of soils exposed to car tires burning in Ngaoundere (Cameroon). J. Mater. Environ. Sci. 2016, 7, 4633–4645. [Google Scholar]
- Asaah, V.A.; Akinlolu, F.A.; Cheo, E.S. Heavy metal concentrations and distribution in surface soils of the Bassa Industrial Zone 1, Douala, Cameroon. Arab. J. Sci. Eng. 2006, 31, 147–158. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Sello, L.A.; Mmolawa, K.; Kabelo, G.G. Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environ. Ecol. Res. 2013, 1, 32–40. [Google Scholar] [CrossRef]
- Izah, S.C. Health risk assessment of selected heavy metals in gari (cassava lake) sold in some major markets in Yenagoa metropolis, Nigeria. MOJ Toxicol. 2018, 4, 47–52. [Google Scholar] [CrossRef]
- Kurker, S.; Seker, S.; Abaci, Z.; Kutlu, B. Ecological risk assessment of heavy metals in surface sediments of the northern littoral zone of Lake Cildir, Ardahan, Turkey. Environ. Monit. Assess. 2014, 186, 3847–3857. [Google Scholar] [CrossRef]
- Bai, J.; Baoshan, C.; Bin, C.; Kejiang, Z.; Wei, D.; Haifeng, G.; Rong, X. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Model. J. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Otari, M.; Dabiri, R. Geochemical and environmental assessment of heavy metals in soils and sediments of Forumad Chromite mine, NE of Iran. J. Min. Environ. 2015, 6, 251–261. [Google Scholar] [CrossRef]
- Warren-Hicks, W.; Parkhurst, B.; Baker, J.S. Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference Document; EPA/600/3-89/013; US Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
TE | Ba | Cr | Mn | Fe | Cu | Ni | Cu | Zn | Ga | Pb | Zr | Nb | Y | Ti | V | Br | Sn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Geochemical Background Values(ppm) | |||||||||||||||||
580 | 90 | 850 | 47,200 | 19 | 68 | 45 | 95 | 19 | 20 | 160 | 11 | 26 | 4600 | 130 | 4 | 6 | |
Classes | Igeo Values | Soil Quality | EF Values | Soil Quality |
---|---|---|---|---|
0 | Igeo ≤ 0 | Not contaminated | EF < 2 | Deficient to minimal enrichment |
1 | 0 < Igeo < 1 | Not contaminated to moderately contaminated | 2 < EF < 5 | Moderate enrichment |
2 | 1 < Igeo < 2 | Moderately contaminated | 5 < EF < 20 | High enrichment |
3 | 2 < Igeo < 3 | Moderately to heavily contaminated | 20 < EF < 40 | Very high enrichment |
4 | 3 < Igeo < 4 | Heavily contaminated | EF > 40 | Extremely high enrichment |
5 | 4 < Igeo < 5 | Heavily to extremely Contaminated | ||
6 | Igeo ≥ 5 | Extremely contaminated |
Ei Value | Interpretation | RI Value | Interpretation |
---|---|---|---|
Ei < 40 | Low | RI < 95 | Low |
40 ≤ Ei < 80 | Moderate | 95 ≤ RI < 190 | Moderate |
80 ≤ Ei < 160 | Considerable | 190 ≤ RI < 380 | Considerable |
160 ≤ Ei < 320 | High | 380 ≥ RI | Very High |
320 ≥ Ei | Very High |
TE | Min. | Max. | Mean | SD | Detection Limit | Global Average ⸭ | Max. Permissible Con. in Soil |
---|---|---|---|---|---|---|---|
Ba | 16 | 207.2 | 89 | 61 | 1.5 | 550 | NA |
Br | 2 | 13 | 7 | 3 | 0.5 | 2.8 | NA |
Co | 11 | 22 | 17 | 3 | 3 | 10 | 30a |
Cr | 73 | 267.3 | 110 | 36 | 1 | 35 | 150a |
Cu | 1 | 68 | 22 | 14 | 0.5 | 25 | 100a, 30b |
Fe | 6500 | 84,700 | 42,006 | 20,227 | 1 | 35,000 | 50,000a |
Ga | 11 | 40 | 23 | 7 | 0.5 | 17 | NA |
Mn | 57.5 | 696 | 293 | 178 | 1 | 600 | 2000a |
Nb | 33 | 98 | 57 | 15 | 0.5 | 25 | NA |
Ni | 21 | 84 | 52 | 18 | 0.5 | 20 | 50a, 40b |
Pb | 15 | 111 | 31 | 22 | 0.6 | 20 | 100b |
Sn | 3 | 8 | 5 | 1 | 0.5 | 5.5 | NA |
Ti | 8900 | 19,300 | 13,004 | 2537 | 2 | 3000 | NA |
V | 12 | 142 | 96 | 27 | 1 | 60 | NA |
Y | 10 | 23 | 17 | 4 | 0.5 | 22 | NA |
Zn | 33 | 148 | 62 | 30 | 0.5 | 71 | 300a |
Zr | 411 | 1080 | 652 | 176 | 0.5 | 190 | NA |
TE Concentrations (ppm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
TE | This Study | Lomié | Meiganga | Dschang | Douala | Nigeria | China | Burkina | Niger |
Ba | 89 | 175 | - | 147 | - | - | - | - | - |
Cr | 110 | 903 | 122 | 186 | 89 | 25 | 22 | 5 | 16 |
Mn | 292 | 421 | - | - | 551 | 146 | - | - | - |
Fe | 42,005 | 126,343 | - | - | 7 | 784 | - | - | - |
Co | 17 | - | - | 23 | 5 | 4 | - | - | - |
Ni | 52 | 189 | 169 | 64 | 43 | 20 | 10 | 1 | 8 |
Cu | 22 | 36 | 192 | 8 | 96 | 39 | 19 | 10 | 17 |
Zn | 61 | 35 | - | 67 | 421 | 10 | 82 | 40 | - |
Ga | 22 | 18 | - | 59 | - | - | - | - | - |
Pb | 31 | 16 | 6 | 18 | 302 | 71 | 41 | 1 | 1 |
Zr | 651 | 264 | - | 2209 | - | - | - | - | - |
Nb | 57 | - | - | - | - | - | - | - | - |
Y | 17 | 9 | - | 33 | - | - | - | - | - |
Ti | 13,004 | - | - | - | - | - | - | - | - |
V | 96 | - | - | - | - | - | - | - | - |
Br | 7 | 10 | - | - | - | - | - | - | - |
References | - | [8] | [9] | [57] | [60] | [41] | [7] | [55] | [56] |
Pollution Indices | Descrip Tive Statistic | TE | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ba | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Pb | Zr | Nb | Y | Ti | V | Br | Sn | ||
EF | Mean | 0.18 | 1.81 | 0.43 | 1.00 | 1.50 | 0.96 | 0.59 | 0.86 | 1.61 | 2.05 * | 7.05 * | 7.77 * | 1.01 | 4.97 * | 0.64 | 2.06 * | 1.15 |
Min | 0.08 | 0.80 | 0.17 | 1.00 | 0.35 | 0.31 | 0.21 | 0.41 | 0.59 | 1.06 | 1.80 | 2.36 | 0.26 | 1.36 | 0.45 | 0.14 | 0.44 | |
Max | 0.34 | 7.16 * | 1.01 | 1.00 | 6.96 * | 2.39 | 1.27 | 2.49 | 5.20 | 5.85 * | 34.68 * | 36.51 * | 4.14 | 25.42 * | 0.96 | 4.38 | 4.59 | |
SD | 0.06 | 1.81 | 0.20 | 0.00 | 1.80 | 0.52 | 0.19 | 0.59 | 1.26 | 1.42 | 9.26 | 8.39 | 1.15 | 6.71 | 0.11 | 1.17 | 0.96 |
Sample ID | Ei | RI | |||||
---|---|---|---|---|---|---|---|
Cr | Mn | Ni | Cu | Zn | Pb | ||
A1 | 3.16 | 0.24 | 6.01 | 3.51 | 0.64 | 8.43 | 21.99 |
A2 | 2.49 | 0.45 | 6.15 | 5.91 | 0.75 | 9.15 | 24.91 |
A3 | 2.34 | 0.62 | 3.74 | 2.60 | 1.51 | 7.55 | 18.36 |
A4 | 2.01 | 0.44 | 5.32 | 3.72 | 0.60 | 8.13 | 20.21 |
A5 | 2.55 | 0.49 | 4.11 | 3.60 | 0.57 | 7.90 | 19.22 |
A6 | 3.43 | 0.63 | 2.91 | 7.58 | 0.77 | 6.35 | 21.67 |
A7 | 2.04 | 0.19 | 1.56 | 1.38 | 0.49 | 3.68 | 9.34 |
A8 | 2.13 | 0.82 | 2.97 | 2.54 | 0.51 | 5.48 | 14.45 |
A9 | 2.46 | 0.60 | 4.18 | 2.88 | 0.47 | 5.80 | 16.38 |
A10 | 2.67 | 0.31 | 4.90 | 3.59 | 0.65 | 8.23 | 20.34 |
A11 | 2.28 | 0.26 | 4.89 | 4.27 | 0.71 | 7.78 | 20.18 |
A12 | 2.45 | 0.26 | 4.51 | 2.77 | 0.51 | 7.90 | 18.39 |
A13 | 2.52 | 0.09 | 2.10 | 0.26 | 0.36 | 4.70 | 10.03 |
A14 | 2.48 | 0.10 | 2.35 | 0.68 | 0.39 | 4.90 | 10.90 |
A15 | 2.88 | 0.40 | 5.19 | 3.57 | 1.21 | 13.63 | 26.88 |
A16 | 5.94 | 0.50 | 2.76 | 4.31 | 0.90 | 27.80 | 42.22 |
A17 | 2.53 | 0.31 | 4.55 | 3.52 | 0.83 | 8.10 | 19.85 |
A18 | 2.37 | 0.26 | 5.73 | 4.28 | 0.59 | 8.43 | 21.65 |
A19 | 2.16 | 0.51 | 4.72 | 3.53 | 0.53 | 7.98 | 19.43 |
A20 | 1.72 | 0.07 | 1.51 | 0.14 | 0.34 | 4.03 | 7.82 |
A21 | 2.29 | 0.80 | 4.14 | 3.42 | 1.56 | 22.85 | 35.06 |
A22 | 2.26 | 0.41 | 5.02 | 2.96 | 0.73 | 7.75 | 19.12 |
A23 | 1.62 | 0.45 | 4.14 | 2.99 | 0.56 | 5.85 | 15.61 |
A24 | 2.16 | 0.72 | 5.18 | 2.84 | 0.70 | 7.90 | 19.51 |
A25 | 2.51 | 0.33 | 4.12 | 2.58 | 0.65 | 8.75 | 18.94 |
Mean | 2.54 | 0.41 | 4.11 | 3.18 | 0.70 | 8.76 | 19.70 |
TE | Ba | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Pb | Zr | Y | Sn | Br | Ti | V | Nb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ba | 1.00 | ||||||||||||||||
Cr | 0.27 | 1.00 | |||||||||||||||
Mn | 0.46 * | 0.09 | 1.00 | ||||||||||||||
Fe | 0.77 * | 0.49 * | 0.41 * | 1.00 | |||||||||||||
Co | −0.60 * | −0.40 | 0.02 | −0.60 * | 1.00 | ||||||||||||
Ni | 0.58 * | −0.08 | 0.18 | 0.74 * | −0.40 * | 1.00 | |||||||||||
Cu | 0.64 * | 0.37 | 0.44 * | 0.79 * | −0.32 | 0.52 * | 1.00 | ||||||||||
Zn | 0.72 * | 0.21 | 0.51 * | 0.41 * | −0.31 | 0.24 | 0.33 | 1.00 | |||||||||
Ga | 0.42 * | 0.03 | −0.09 | 0.66 * | −0.49 * | 0.89 * | 0.43 * | 0.05 | 1.00 | ||||||||
Pb | 0.53 * | 0.70 * | 0.35 | 0.55 * | −0.31 | 0.13 | 0.31 | 0.61 * | 0.11 | 1.00 | |||||||
Zr | −0.42 * | −0.19 | −0.39 | −0.30 | 0.14 | −0.01 | −0.41 * | −0.25 | 0.06 | −0.23 | 1.00 | ||||||
Y | −0.16 | −0.15 | −0.32 | 0.06 | −0.11 | 0.45 * | −0.17 | −0.20 | 0.55 * | −0.17 | 0.77 * | 1.00 | |||||
Sn | −0.03 | −0.09 | 0.48 | −0.02 | 0.11 | −0.10 | 0.00 | −0.03 | −0.13 | −0.07 | −0.16 | −0.13 | 1.00 | ||||
Br | 0.16 | −0.06 | 0.04 | 0.23 | −0.14 | 0.47 * | −0.04 | −0.07 | 0.35 | −0.12 | 0.12 | 0.34 | −0.01 | 1.00 | |||
Ti | −0.74 * | −0.25 | −0.43 | −0.67 * | 0.40 * | −0.40 * | −0.75 * | −0.57 * | −0.24 | −0.40 * | 0.64 * | 0.43 * | 0.12 | 0.05 | 1.00 | ||
V | 0.52 * | 0.27 | 0.01 | 0.85 * | −0.53 * | 0.70 * | 0.44 * | 0.17 | 0.64 * | 0.30 | −0.53 * | −0.09 | −0.15 | 0.37 | −0.60 * | 1.00 | |
Nb | −0.11 | −0.12 | −0.05 | 0.10 | 0.04 | 0.22 | −0.13 | −0.09 | 0.20 | 0.05 | 0.58 * | 0.43 * | −0.05 | −0.06 | 0.42 * | −0.30 | 1.00 |
TE | Ingestion Risk | Inhalation Risk | Carcinogenic Risk |
---|---|---|---|
Chromium | 3.73 × 10−4 | 6.96 × 10−6 | 3.8 × 10−4 |
Cobalt | - | 4.18 × 10−8 | 4.18 × 10−8 |
Nickel | - | 3.81 × 10−9 | 3.18 × 10−9 |
Total Risk/HI | 3.73 × 10−4 | 7.01 × 10−6 | 3.8 × 10−4 |
TE | Ingestion Child HQ | Inhalation Child HQ | Non-Carcinogenic Child HI | Ingestion Adult HQ | Inhalation Adult HQ | Non-Carcinogenic Adult HI |
---|---|---|---|---|---|---|
Barium | 5.72 × 10−3 | 1.26 × 10−5 | 5.73 × 10−3 | 5.36 × 10−4 | 1.26 × 10−5 | 5.48 × 10−4 |
Chromium | 2.82 × 10−1 | 2.60 × 10−4 | 2.83 × 10−1 | 2.65 × 10−2 | 2.60 × 10−4 | 2.67 × 10−2 |
Cobalt | 7.42 × 10−2 | 6.14 × 10−4 | 7.48 × 10−2 | 6.95 × 10−3 | 6.14 × 10−4 | 7.57 × 10−3 |
Copper | 7.16 × 10−3 | - | 7.16 × 10−3 | 6.71 × 10−4 | - | 6.71 × 10−4 |
Iron | 7.67 × 10−1 | - | 7.67 × 10−1 | 7.19 × 10−2 | - | 7.19 × 10−2 |
Rubidium | 1.32 × 10−1 | - | 1.32 × 10−1 | 1.23 × 10−2 | - | 1.23 × 10−2 |
Strontium | 1.05 × 10−4 | - | 1.05 × 10−4 | 9.89 × 10−6 | - | 9.89 × 10−6 |
Zinc | 1.67 × 10−1 | - | 1.67 × 10−1 | 1.56 × 10−2 | - | 1.56 × 10−2 |
Zirconium | 104 | - | 104 | 9.76 | - | 9.76 |
Total Risk/HI | 106 | 8.86 × 10−4 | 106 | 9.90 | 8.86 × 10−4 | 9.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sime, F.K.; Gondji, D.S.; Rosianna, I.; Nugraha, E.D.; Modibo, O.B.; Kranrod, C.; Omori, Y.; Akata, N.; Hosoda, M.; Saïdou; et al. Ecological and Health Risks from Trace Elements Contamination in Soils at the Rutile Bearing Area of Akonolinga, Cameroon. Appl. Sci. 2024, 14, 10538. https://doi.org/10.3390/app142210538
Sime FK, Gondji DS, Rosianna I, Nugraha ED, Modibo OB, Kranrod C, Omori Y, Akata N, Hosoda M, Saïdou, et al. Ecological and Health Risks from Trace Elements Contamination in Soils at the Rutile Bearing Area of Akonolinga, Cameroon. Applied Sciences. 2024; 14(22):10538. https://doi.org/10.3390/app142210538
Chicago/Turabian StyleSime, Fayette Kitcha, Dieu Souffit Gondji, Ilsa Rosianna, Eka Djatnika Nugraha, Oumar Bobbo Modibo, Chutima Kranrod, Yasutaka Omori, Naofumi Akata, Masahiro Hosoda, Saïdou, and et al. 2024. "Ecological and Health Risks from Trace Elements Contamination in Soils at the Rutile Bearing Area of Akonolinga, Cameroon" Applied Sciences 14, no. 22: 10538. https://doi.org/10.3390/app142210538
APA StyleSime, F. K., Gondji, D. S., Rosianna, I., Nugraha, E. D., Modibo, O. B., Kranrod, C., Omori, Y., Akata, N., Hosoda, M., Saïdou, & Tokonami, S. (2024). Ecological and Health Risks from Trace Elements Contamination in Soils at the Rutile Bearing Area of Akonolinga, Cameroon. Applied Sciences, 14(22), 10538. https://doi.org/10.3390/app142210538