Neural and Cardio-Respiratory Responses During Maximal Self-Paced and Controlled-Intensity Protocols at Similar Perceived Exertion Levels: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurement Protocols
2.2.1. Incremental Exercise Test
2.2.2. Self-Paced O2max Test
2.3. Measurement Tools
2.3.1. Gas Exchange Measurements
2.3.2. Cardiac Output and Heart Rate Monitoring
2.3.3. Electroencephalography (EEG) Recording
2.4. Data Analysis
2.4.1. Data Synchronization
2.4.2. EEG Analysis
2.4.3. Statistical Analysis
3. Results
3.1. Physiological and Power Variables
3.2. EEG
3.2.1. Alpha PSD
3.2.2. Beta PSD
3.2.3. Alpha/Beta Ratio
3.3. EEG/O2 Ratio
3.3.1. EEG Alpha/O2 Ratio
3.3.2. EEG Beta/O2 Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.H.; Emerson, J.A.; Williams, D.M. Age Moderates the Effect of Self-Paced Exercise on Exercise Adherence among Overweight Adults. J. Aging Health 2020, 32, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Dunsiger, S.; Miranda, R., Jr.; Gwaltney, C.J.; Emerson, J.A.; Monti, P.M.; Parisi, A.F. Recommending self-paced exercise among overweight and obese adults: A randomized pilot study. Ann. Behav. Med. 2015, 49, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M. Exercise, affect, and adherence: An integrated model and a case for self-paced exercise. J. Sport. Exerc. Psychol. 2008, 30, 471–496. [Google Scholar] [CrossRef] [PubMed]
- Hamlyn-Williams, C.C.; Williams, D.M. Comparing exercise adherence strategies: The efficacy of self-paced versus prescribed intensity exercise among inactive adults. Behav. Med. 2014, 40, 61–69. [Google Scholar]
- Chidnok, W.; Dimenna, F.J.; Bailey, S.J.; Wilkerson, D.P.; Vanhatalo, A.; Jones, A.M. VO2max is not altered by self-pacing during incremental exercise. Eur. J. Appl. Physiol. 2013, 113, 529–539. [Google Scholar] [CrossRef]
- Molinari, C.A.; Palacin, F.; Poinsard, L.; Billat, V.L. Determination of Submaximal and Maximal Training Zones From a 3-Stage, Variable-Duration, Perceptually Regulated Track Test. Int. J. Sports Physiol. Perform. 2020, 15, 853–861. [Google Scholar] [CrossRef]
- Mauger, A.R.; Sculthorpe, N. A new VO2max protocol allowing self-pacing in maximal incremental exercise. Br. J. Sports Med. 2011, 46, 59–63. [Google Scholar] [CrossRef]
- Faulkner, J.; Mauger, A.R.; Woolley, B.; Lambrick, D.M. The efficacy of self-paced VO2max testing in athletes. Med. Sci. Sports Exerc. 2015, 47, 982–987. [Google Scholar] [CrossRef]
- Hogg, J.S.; Hopker, J.G.; Mauger, A.R. The self-paced VO2max test to assess maximal oxygen uptake in highly trained runners. Int. J. Sports Physiol. Perform. 2015, 10, 172–177. [Google Scholar] [CrossRef]
- Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sports Med. 2009, 43, e1. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.V.; Marino, F.E. A role for the prefrontal cortex in exercise tolerance and termination. J. Appl. Physiol. 2016, 120, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Palacin, F.; Poinsard, L.; Mattei, J.; Berthomier, C.; Billat, V. Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study. Int. J. Environ. Res. Public. Health 2024, 21, 1024. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, N.; Scaini, S.; Billat, V.; Lazzer, S. A new field test to estimate the aerobic and anaerobic thresholds and maximum parameters. Eur. J. Sport. Sci. 2020, 20, 437–443. [Google Scholar] [CrossRef]
- Billat, V.; Poinsard, L.; Palacin, F.; Pycke, J.R.; Maron, M. Oxygen Uptake Measurements and Rate of Perceived Exertion during a Marathon. Int. J. Env. Res. Public. Health 2022, 19, 5760. [Google Scholar] [CrossRef]
- Noakes, T.D.; St Clair Gibson, A. Logical limitations to the “catastrophe” models of fatigue during exercise in humans. Br. J. Sports Med. 2004, 38, 648–649. [Google Scholar] [CrossRef]
- Amann, M. Central and peripheral fatigue: Interaction during cycling exercise in humans. Med. Sci. Sports Exerc. 2011, 43, 2039–2045. [Google Scholar] [CrossRef]
- Noakes, T.D. Fatigue is a Brain-Derived Emotion that Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis. Front. Physiol. 2012, 3, 82. [Google Scholar] [CrossRef]
- Bixby, W.R.; Spalding, T.W.; Hatfield, B.D. Temporal Dynamics and Dimensional Specificity of the Affective Response to Exercise of Varying Intensity: Differing Pathways to a Common Outcome. J. Sport. Exerc. Psychol. 2001, 23, 171–190. [Google Scholar] [CrossRef]
- Thompson, T.; Steffert, T.; Ros, T.; Leach, J.; Gruzelier, J. EEG applications for sport and performance. Methods. 2008, 45, 279–288. [Google Scholar] [CrossRef]
- Brümmer, V.; Schneider, S.; Abel, T.; Vogt, T.; Strüder, H.K. Brain cortical activity is influenced by exercise mode and intensity. Med. Sci. Sports Exerc. 2011, 43, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Cheron, G.; Petit, G.; Cheron, J.; Leroy, A.; Cebolla, A.; Cevallos, C.; Petieau, M.; Hoellinger, T.; Zarka, D.; Clarinval, A.M.; et al. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance. Front. Psychol. 2016, 7, 246. [Google Scholar] [CrossRef] [PubMed]
- Enders, H.; Nigg, B.M. Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations. Eur. J. Sport. Sci. 2016, 16, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Bigliassi, M.; Filho, E. Functional significance of the dorsolateral prefrontal cortex during exhaustive exercise. Biol. Psychol. 2022, 175, 108442. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.P.; Hall, E.E.; Folger, S.E.; Miller, P.C. Changes in EEG during graded exercise on a recumbent cycle ergometer. J. Sports Sci. Med. 2008, 7, 505–511. [Google Scholar] [PubMed] [PubMed Central]
- Edwards, A.M.; Deakin, G.B.; Guy, J.H. Brain and Cardiorespiratory Responses to Exercise in Hot and Thermoneutral Conditions. Int. J. Sports Med. 2016, 37, 779–784. [Google Scholar] [CrossRef]
- Mechau, D.; Mücke, S.; Weiss, M.; Liesen, H. Effect of increasing running velocity on electroencephalogram in a field test. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 340–345. [Google Scholar] [CrossRef]
- Maceri, R.M.; Cherup, N.P.; Hanson, N.J. EEG Responses to Incremental Self-Paced Cycling Exercise in Young and Middle Aged Adults. Int. J. Exerc. Sci. 2019, 12, 800–810. [Google Scholar] [CrossRef]
- Brümmer, V.; Schneider, S.; Strüder, H.K.; Askew, C.D. Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience 2011, 181, 150–162. [Google Scholar] [CrossRef]
- Robertson, C.V.; Marino, F.E. Prefrontal and motor cortex EEG responses and their relationship to ventilatory thresholds during exhaustive incremental exercise. Eur. J. Appl. Physiol. 2015, 115, 1939–1948. [Google Scholar] [CrossRef]
- Dykstra, R.M.; Hanson, N.J.; Miller, M.G. Brain activity during self-paced vs. fixed protocols in graded exercise testing. Exp. Brain Res. 2019, 237, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Utter, A.; Austin, M.; Nieman, D.; Dew, D.; Bowles, E.; Moody, A.; Cartner, B. Validation of Cosmed’S Quark Cpet and Mixing Chamber System: 782. Med. Sci. Sports Exerc. 2011, 43, 80. [Google Scholar] [CrossRef]
- Nieman, D.C.; Austin, M.D.; Dew, D.; Utter, A.C. Validity of COSMED’s Quark CPET Mixing Chamber System in Evaluating Energy Metabolism During Aerobic Exercise in Healthy Male Adults. Res. Sports Med. 2013, 21, 136–145. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stovall, J.H.; Stone, J.D.; Stephenson, M.; Finomore, V.S.; Hagen, J.A. Validation of Garmin and Polar Devices for Continuous Heart Rate Monitoring During Common Training Movements in Tactical Populations. Meas. Phys. Educ. Exerc. Sci. 2022, 27, 234–247. [Google Scholar] [CrossRef]
- Charloux, A.; Lonsdorfer-Wolf, E.; Richard, R.; Lampert, E.; Oswald-Mammosser, M.; Mettauer, B.; Geny, B.; Lonsdorfer, J. A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: Comparison with the “direct” Fick method. Eur. J. Appl. Physiol. 2000, 82, 313–320. [Google Scholar] [CrossRef]
- Richard, R.; Lonsdorfer-Wolf, E.; Charloux, A.; Doutreleau, S.; Buchheit, M.; Oswald-Mammosser, M.; Lampert, E.; Mettauer, B.; Geny, B.; Lonsdorfer, J. Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur. J. Appl. Physiol. 2001, 85, 202–207. [Google Scholar] [CrossRef]
- Enders, H.; Cortese, F.; Maurer, C.; Baltich, J.; Protzner, A.B.; Nigg, B.M. Changes in cortical activity measured with EEG during a high-intensity cycling exercise. J. Neurophysiol. 2016, 115, 379–388. [Google Scholar] [CrossRef]
- Ferree, T.C.; Luu, P.; Russell, G.S.; Tucker, D.M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 2001, 112, 536–544. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Makeig, S.; Bell, A.; Jung, T.P.; Sejnowski, T. Independent Component Analysis of Electroencephalographic Data. Adv. Neural Inf. Process. Syst. 1996, 8, 145–151. [Google Scholar]
- Nielsen, B.; Hyldig, T.; Bidstrup, F.; González-Alonso, J.; Christoffersen, G.R. Brain activity and fatigue during prolonged exercise in the heat. Pflug. Arch. 2001, 442, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B. How we walk: Central control of muscle activity during human walking. Neuroscientist 2003, 9, 195–204. [Google Scholar] [CrossRef]
- Grafton, S.T. The cognitive neuroscience of prehension: Recent developments. Exp. Brain Res. 2010, 204, 475–491. [Google Scholar] [CrossRef]
- Hikosaka, O.; Nakamura, K.; Sakai, K.; Nakahara, H. Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 2002, 12, 217–222. [Google Scholar] [CrossRef]
- Ruddy, K.L.; Carson, R.G. Neural pathways mediating cross education of motor function. Front. Hum. Neurosci. 2013, 7, 397. [Google Scholar] [CrossRef]
- Lambert, E.V.; St Clair Gibson, A.; Noakes, T.D. Complex systems model of fatigue: Integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br. J. Sports Med. 2005, 39, 52–62. [Google Scholar] [CrossRef]
- Garcin, M.; Vandewalle, H.; Monod, H. A new rating scale of perceived exertion based on subjective estimation of exhaustion time: A preliminary study. Int. J. Sports Med. 1999, 20, 40–43. [Google Scholar] [CrossRef]
- Garcin, M.; Billat, V. Perceived exertion scales attest to both intensity and exercise duration. Percept. Mot. Skills. 2001, 93, 661–671. [Google Scholar] [CrossRef] [PubMed]
- St Clair Gibson, A.; Noakes, T.D. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br. J. Sports Med. 2004, 38, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.; Berthomier, C.; Clémençon, M.; Brandewinder, M.; Essid, S.; Damon, C.; Rigaud, F.; Bénichoux, A.; Maby, E.; Fornoni, L.; et al. Electroencephalography Response during an Incremental Test According to the O2max Plateau Incidence. Appl. Sci. 2024, 14, 5411. [Google Scholar] [CrossRef]
- Bentley, D.J.; Newell, J.; Bishop, D. Incremental exercise test design and analysis: Implications for performance diagnostics in endurance athletes. Sports Med. 2007, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; Carroll, S.; Marchant, D.; McNaughton, L.R.; Siegler, J. Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria. Appl. Physiol. Nutr. Metab. 2009, 34, 115–123. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Voelcker-Rehage, C.; Niemann, C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci. Biobehav. Rev. 2013, 37, 2268–2295. [Google Scholar] [CrossRef]
- Prakash, R.S.; Voss, M.W.; Erickson, K.I.; Kramer, A.F. Physical activity and cognitive vitality. Annu. Rev. Psychol. 2015, 66, 769–797. [Google Scholar] [CrossRef]
- Colcombe, S.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef]
- Anderson, A.J.; Perone, S. Developmental change in the resting state electroencephalogram: Insights into cognition and the brain. Brain Cogn. 2018, 126, 40–52. [Google Scholar] [CrossRef]
- Swain, D.P.; Franklin, B.A. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am. J. Cardiol. 2006, 97, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.C.; Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 2009, 33, 1004–1023. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; McMillan, D.W.; Edmunds, R.M.; Sanchez, E. Increased cardiac output elicits higher VO2max in response to self-paced exercise. Appl. Physiol. Nutr. Metab. 2015, 40, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.P.; Martin, P.E. The association between cycling experience and preferred and most economical cadences. Med. Sci. Sports Exerc. 1993, 25, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, T.; Yasuda, Y.; Ono, T.; Moritani, T. Optimal pedaling rate estimated from neuromuscular fatigue for cyclists. Med. Sci. Sports Exerc. 1996, 28, 1492–1497. [Google Scholar] [CrossRef]
- Takaishi, T.; Yamamoto, T.; Ono, T.; Ito, T.; Moritani, T. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Med. Sci. Sports Exerc. 1998, 30, 442–449. [Google Scholar] [CrossRef]
- Rose, E.A.; Parfitt, G. A quantitative analysis and qualitative explanation of the individual differences in affective responses to prescribed and self-selected exercise intensities. J. Sport. Exerc. Psychol. 2007, 29, 281–309. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Hall, E.E.; Petruzzello, S.J. The relationship between exercise intensity and affective responses demystified: To crack the 40-year-old nut, replace the 40-year-old nutcracker! Ann. Behav. Med. 2008, 35, 136–149. [Google Scholar] [CrossRef]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 17 October 2024).
Variable | IET | SPV | p |
---|---|---|---|
Rf (1/min) | 61.1 ± 5.1 | 61.7 ± 8.1 | 0.844 |
Vt (L(btps)) | 2.9 ± 0.6 | 2.8 ± 0.5 | 0.131 |
E (L/min) | 147.8 ± 27.4 | 144.7 ± 31.4 | 0.844 |
RER | 1.2 ± 0.1 | 1.1 ± 0.04 | 0.674 |
Relative O2 (mL·kg−1·min−1) | 54.3 ± 8.2 | 53.7 ± 7.7 | 0.313 |
Absolute O2 (mL·min−1) | 3832.0 ± 648.3 | 3792.1 ± 630.3 | 0.313 |
Relative CO2 (mL·kg−1·min−1) | 58.0 ± 9.6 | 57.2 ± 8.6 | 0.438 |
Absolute CO2 (mL·min−1) | 4088.3 ± 721.9 | 4030.2 ± 673.0 | 0.438 |
HR (bpm) | 171.8 ± 14.7 | 173.0 ± 15.5 | 0.498 |
SV (mL) | 145.1 ± 8.4 | 145.8 ± 11.8 | 0.813 |
CO (L/min) | 24.4 ± 2.2 | 24.4 ± 3.7 | 0.813 |
MAP (W) | 326.5 ± 67.3 | 331.7 ± 67.1 | 0.563 |
Pmax (W) | 358.3 ± 74.3 | 374.8 ± 66.3 | 0.343 |
Cadence (rpm) | 89.16 ± 4.5 | 96.65 ± 4.4 | 0.031 |
Variable | IET | SPV | p |
---|---|---|---|
Central α | 2.03 ± 1.6 | 1.92 ± 1.1 | 0.856 |
Frontal α | 1.80 ± 1.2 | 1.72 ± 1.0 | 0.856 |
Parietal α | 1.83 ± 1.3 | 1.74 ± 0.8 | 0.579 |
TP α | 1.83 ± 1.3 | 1.75 ± 0.9 | 0.587 |
Central β | 1.65 ± 0.9 | 1.33 ± 0.8 | <0.001 |
Frontal β | 1.54 ± 0.7 | 1.49 ± 0.7 | 0.309 |
Parietal β | 1.63 ± 0.8 | 1.57 ± 0.8 | 0.274 |
TP β | 1.58 ± 0.8 | 1.46 ± 0.7 | 0.027 |
Central α/β ratio | 0.99 ± 0.7 | 0.87 ± 0.9 | 0.122 |
Frontal α/β ratio | 1.16 ± 0.6 | 1.12 ± 0.6 | 0.422 |
Parietal α/β ratio | 0.81 ± 0.5 | 0.84 ± 0.6 | 0.618 |
TP α/β ratio | 1.01 ± 0.6 | 0.96 ± 0.5 | 0.310 |
Condition | Time (%) | Condition × Time (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
R2 | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | |
Central Alpha/O2 | 0.275 | 3.035 | 0.002 | 0.954 | 0.331 | 6.374 | <0.001 | 0.145 | 0.981 |
Frontal Alpha/O2 | 0.528 | 8.952 | <0.001 | 0.384 | 0.537 | 19.399 | <0.001 | 0.232 | 0.947 |
Parietal Alpha/O2 | 0.343 | 4.177 | <0.001 | 0.090 | 0.764 | 8.861 | <0.001 | 0.322 | 0.899 |
TP Alpha/O2 | 0.438 | 6.237 | <0.001 | 0.185 | 0.668 | 13.486 | <0.001 | 0.198 | 0.962 |
Condition | Time (%) | Condition × Time (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
R2 | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | |
Central Beta/O2 | 0.466 | 6.810 | <0.001 | 2.415 | 0.124 | 13.439 | <0.001 | 1.250 | 0.293 |
Frontal Beta/O2 | 0.389 | 4.969 | <0.001 | 0.052 | 0.819 | 10.867 | <0.001 | 0.054 | 0.998 |
Parietal Beta/O2 | 0.225 | 2.270 | 0.017 | 0.475 | 0.493 | 4.868 | 0.001 | 0.041 | 0.999 |
TP Beta/O2 | 0.336 | 3.964 | <0.001 | 0.030 | 0.863 | 8.682 | <0.001 | 0.032 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poinsard, L.; Palacin, F.; Hashemi, I.S.; Billat, V. Neural and Cardio-Respiratory Responses During Maximal Self-Paced and Controlled-Intensity Protocols at Similar Perceived Exertion Levels: A Pilot Study. Appl. Sci. 2024, 14, 10551. https://doi.org/10.3390/app142210551
Poinsard L, Palacin F, Hashemi IS, Billat V. Neural and Cardio-Respiratory Responses During Maximal Self-Paced and Controlled-Intensity Protocols at Similar Perceived Exertion Levels: A Pilot Study. Applied Sciences. 2024; 14(22):10551. https://doi.org/10.3390/app142210551
Chicago/Turabian StylePoinsard, Luc, Florent Palacin, Iraj Said Hashemi, and Véronique Billat. 2024. "Neural and Cardio-Respiratory Responses During Maximal Self-Paced and Controlled-Intensity Protocols at Similar Perceived Exertion Levels: A Pilot Study" Applied Sciences 14, no. 22: 10551. https://doi.org/10.3390/app142210551
APA StylePoinsard, L., Palacin, F., Hashemi, I. S., & Billat, V. (2024). Neural and Cardio-Respiratory Responses During Maximal Self-Paced and Controlled-Intensity Protocols at Similar Perceived Exertion Levels: A Pilot Study. Applied Sciences, 14(22), 10551. https://doi.org/10.3390/app142210551