Multi-Objective Optimization Study on Production of AlSi10Mg Alloy by Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Test Samples
2.2. Relative Density and Surface Roughness Measurement
2.3. TOPSIS Method: Best Option Approach in Decision-Making Processes
- Creating a Decision Matrix: A decision matrix is formed that includes the density and surface roughness values of the alternatives (different production methods or parameter settings). This matrix reflects the measurements of both criteria for each alternative.
- Normalization: The decision matrix is normalized to eliminate the impact of different scales. This process helps make the alternatives comparable.
- Weighting: Weights are assigned to the density and surface roughness criteria based on their importance. For example, in some applications, if surface roughness is more critical, a higher weight may be assigned to this criterion.
- Identifying Ideal and Negative Ideal Solutions: From the normalized data, alternatives with the best (ideal) and worst (negative ideal) performance values are identified. The ideal solution represents the highest density and lowest surface roughness, while the negative ideal solution represents the opposite characteristics.
- Distance Calculation: The distances of each alternative from the ideal and negative ideal solutions are calculated, determining how close the alternatives are to the best solution.
- Relative Proximity Value: Using the calculated distances, the relative proximity of each alternative to the ideal solution is assessed. This step ensures that both density and surface roughness are considered together.
- Ranking: Based on the obtained relative proximity values, the alternatives are ranked, and the one with the highest proximity is identified as the most suitable option in terms of density and surface roughness.
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galetto, M.; Genta, G.; Maculotti, G.; Verna, E. Defect Probability Estimation for Hardness-Optimized Parts by Selective Laser Melting. Int. J. Precis. Eng. Manuf. 2020, 21, 1739–1753. [Google Scholar] [CrossRef]
- Siyambaş, Y.; Turgut, Y. Defects, Mechanical Properties and Surface Roughness in AlSi10Mg Alloy Parts Produced by Selective Laser Melting (SLM) Method-A Study. Gazi Univ. J. Sci. Part C Des. Technol. 2022, 10, 368–390. [Google Scholar]
- Siyambaş, Y.; Turgut, Y. Experimental and statistical investigation of mechanics properties and surface roughness in additive manufacturing with selective Laser melting of AlSi10Mg alloy. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 515. [Google Scholar] [CrossRef]
- Özsoy, A.L.; Sirin, E.; Yildirim, C.V.; Sarikaya, M. Effect of Process Parameters on Surface Quality in the Production of AlSi10Mg Alloy by SLM Method. Gazi Univ. J. Sci. Part C Des. Technol. 2024, 12, 480–493. [Google Scholar]
- Praneeth, J.; Venkatesh, S.; Krishna, L.S. Process parameters influence on mechanics properties of AlSi10Mg by SLM. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Aydin, D.S.; Ozsoy, A.L.; Yildirim, C.V. Optimization of Process Parameters in the Production of Ti6Al4V Alloy by SLM Method Using Taguchi Method. Int. J. Innov. Eng. Appl. 2022, 6, 230–236. [Google Scholar]
- Alamri, F.; Maalouf, M.; Barsoum, I. Prediction of Porosity, Hardness and Surface Roughness in Additive Manufactured AlSi10Mg Samples. Res. Square, 2023; preprint. [Google Scholar] [CrossRef]
- MemaranBabakan, A.; Davoodi, M.; Shafaie, M.; Sarparast, M. Investigation of process parameters effects on porosity in SLM process of AlSi10Mg alloys. Res. Square, 2023; preprint (version 1). [Google Scholar] [CrossRef]
- Rios, J.A.T.; Zambrano-Robledo, P.; Taborda, J.D.T.; Espinoza, J.A.G.; Isaza, C.J.; Juárez-Hernández, A. Process parameters effect and porosity reduction on AlSi10Mg parts manufactured by selective Laser melting. Int. J. Adv. Manuf. Technol. 2023, 129, 3341–3351. [Google Scholar] [CrossRef]
- Huang, M.; Yang, B.; Zhou, Y.; Guan, X.; Wang, Y.; Liao, Z.; Xiao, S.; Yang, G.; Zhu, T. Effect of Processing Parameters on Tensile Properties and Microstructure of Selective Laser Melted AlSi10Mg Alloy. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y. Multi-objective Optimization in Selective Laser Melting of AlSi10Mg Alloy Based on Response Surface Methodology. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Siyambaş, Y.; Turgut, Y. Experimental investigation and Optimization of the effects of manufacturing Parameters on geometry tolerances in additive manufacturing of AlSi10Mg alloy. Int. J. Adv. Manuf. Technol. 2024, 134, 415–429. [Google Scholar] [CrossRef]
- Işik, U.; Demir, H.; Özlü, B. Multi-objective Optimization of Process Parameters for Surface Quality and Geometric Tolerances of AlSi10Mg Samples Produced by Additive Manufacturing Method Using Taguchi-Based Gray Relational Analysis. Arab. J. Sci. Eng. 2024. [Google Scholar] [CrossRef]
- Alp, M.S.; Celik, Y.H.; Kilickap, E.; Yardim Eden, A. Flax Fiber Reinforced Composite Optimization of Cutting Parameters in Milling Machines by Using Full Factorial Design and Topsis Method. Int. J. Innov. Eng. Appl. 2023, 7, 140–149. [Google Scholar] [CrossRef]
- Nguyen Huu, P.; Nguyen Trong, L. Multi-objective optimization in micro-electrical discharge machining using titanium nitride coated WC electrode. Int. J. Interact. Des. Manuf. 2023, 17, 187–196. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Relative density, Surface Roughness, and Dimensional Accuracy. Materials 2018, 11, 2343. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, Z.; Tse, Y.; Huang, C.; Zhang, W. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt. Laser Technol. 2019, 112, 159–167. [Google Scholar] [CrossRef]
- Dzukey, G.A.; Yang, K. Process Parameter Optimization for Selective Laser Melting of 316L Stainless Steel Material using Taguchi’s Statistical Design of Experimental Procedure. Int. J. Eng. Technol. 2019, 11, 6–13. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, W.; Chen, X. Effect of SLM Process Parameters on Relative Density of Maraging Steel (18Ni-300) Formed Parts. IOP Conf. Ser. Mater. Sci. Eng. 2020, 774, 012027. [Google Scholar] [CrossRef]
- Yang, P.; Guo, X.; He, D.; Tan, Z.; Shao, W.; Fu, H. Selective Laser Melting of High Relative density and High Strength Parts Made of Minor Surface Oxidation Treated Puree Copper Powder. Metals 2021, 11, 1883. [Google Scholar] [CrossRef]
- Aboulkhair, N.T. Additive Manufacture of Aluminum Alloy: Processing, Microstructure, and Mechanical Properties. Ph.D. Thesis, The University of Nottingham, Nottingham, UK, 2015. [Google Scholar]
- Chen, Z.; Wei, Z.; Wei, P.; Chen, S.; Lu, B.; Du, J.; Li, J.; Zhang, S. Experimental Research on Selective Laser Melting AlSi10Mg Alloys: Process, Densification and Performance. J. Mater. Eng. Perform. 2017, 26, 5897–5905. [Google Scholar] [CrossRef]
Element | Percentage by Weight |
---|---|
Si | |
Mg | |
Mn | |
Cu | |
F | |
Zn | |
What | |
Ti | |
Take it | |
Pb | |
Mr. |
Factors | Symbol | Unit | Variable Levels | |
---|---|---|---|---|
Low | High | |||
Laser Power | LP | W | 200 | 275 |
Hatch Distance | HD | mm | 0.08 | 0.14 |
Scan Speed | SS | mm/s | 800 | 1400 |
Experiment No. | Laser Power | Hatch Distance | Scan Speed | Surface Roughness | Relative Density |
---|---|---|---|---|---|
1 | 275 | 0.08 | 800 | 5.010667 | 0.991244 |
2 | 275 | 0.14 | 800 | 4.421667 | 0.972 |
3 | 200 | 0.08 | 800 | 11.284 | 0.966104 |
4 | 200 | 0.14 | 800 | 13.388 | 0.988376 |
5 | 275 | 0.14 | 1400 | 10.201 | 0.994442 |
6 | 200 | 0.08 | 1400 | 13.53667 | 0.977332 |
7 | 275 | 0.08 | 1400 | 13.20433 | 0.992571 |
8 | 200 | 0.14 | 1400 | 12.94233 | 0.946044 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution |
---|---|---|---|---|---|---|
Model | 6 | 98.6132 | 16.4355 | 1630.07 | 0.019 | 99.99 |
Linear | 3 | 73.5905 | 24.5302 | 2432.89 | 0.015 | 74.62 |
Laser Power (W) | 1 | 41.9223 | 41.9223 | 4157.84 | 0.010 | 42.51 |
Hatch Distance (mm) | 1 | 0.5422 | 0.5422 | 53.77 | 0.086 | 0.55 |
Scan Speed (mm/s) | 1 | 31.1260 | 31.1260 | 3087.07 | 0.011 | 31.56 |
2-Way Interactions | 3 | 25.0226 | 8.3409 | 827.25 | 0.026 | 25.11 |
LP * HD | 1 | 3.2538 | 3.2538 | 322.71 | 0.035 | 3.30 |
LP * SS | 1 | 18.5014 | 18.5014 | 1834.97 | 0.015 | 18.50 |
HD * SS | 1 | 3.2674 | 3.2674 | 324.06 | 0.035 | 3.31 |
Mistake | 1 | 0.0101 | 0.0101 | 0.01 | ||
Total | 7 | 98.6232 | 100.0 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution |
---|---|---|---|---|---|---|
Model | 6 | 0.001266 | 0.000211 | 0.30 | 0.881 | 64.49 |
Linear | 3 | 0.000749 | 0.000250 | 0.36 | 0.807 | 38.15 |
Laser Power (W) | 1 | 0.000655 | 0.000655 | 0.94 | 0.510 | 33.38 |
Hatch Distance (mm) | 1 | 0.000087 | 0.000087 | 0.12 | 0.784 | 4.43 |
Scan Speed (mm/s) | 1 | 0.000007 | 0.000007 | 0.01 | 0.938 | 0.34 |
2-Way Interactions | 3 | 0.000517 | 0.000172 | 0.25 | 0.862 | 26.32 |
LP * HD | 1 | 0.000009 | 0.000009 | 0.01 | 0.929 | 0.44 |
LP * SS | 1 | 0.000376 | 0.000376 | 0.54 | 0.597 | 19.18 |
HD * SS | 1 | 0.000132 | 0.000132 | 0.19 | 0.739 | 6.70 |
Mistake | 1 | 0.000697 | 0.000697 | 35.51 | ||
Total | 7 | 0.001963 | 100.0 |
Normalized Data | Weighted Normalized Data | Si+ | Si- | Ci + | Rank | ||
---|---|---|---|---|---|---|---|
Ra | Rd | Ra | Rd | ||||
0.160028 | 0.358107 | 0.080014 | 0.179054 | 0.009423 | 0.136394 | 0.9354 | 2 |
0.141217 | 0.351155 | 0.070609 | 0.175577 | 0.004054 | 0.145631 | 0.9729 | 1 |
0.360383 | 0.349025 | 0.180192 | 0.174512 | 0.109703 | 0.036154 | 0.2479 | 4 |
0.42758 | 0.357071 | 0.21379 | 0.178535 | 0.143186 | 0.008007 | 0.0530 | 7 |
0.325795 | 0.359262 | 0.162897 | 0.179631 | 0.092289 | 0.053979 | 0.3690 | 3 |
0.432328 | 0.353081 | 0.216164 | 0.176541 | 0.145588 | 0.005652 | 0.0374 | 8 |
0.421714 | 0.358586 | 0.210857 | 0.179293 | 0.140249 | 0.00994 | 0.0662 | 5 |
0.413346 | 0.341778 | 0.206673 | 0.170889 | 0.136345 | 0.009491 | 0.0651 | 6 |
Ra | Rd | |
---|---|---|
Positive ideal | 0.070609 | 0.179631 |
Negative ideal | 0.216164 | 0.170889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toprak, İ.B.; Dogdu, N. Multi-Objective Optimization Study on Production of AlSi10Mg Alloy by Laser Powder Bed Fusion. Appl. Sci. 2024, 14, 10584. https://doi.org/10.3390/app142210584
Toprak İB, Dogdu N. Multi-Objective Optimization Study on Production of AlSi10Mg Alloy by Laser Powder Bed Fusion. Applied Sciences. 2024; 14(22):10584. https://doi.org/10.3390/app142210584
Chicago/Turabian StyleToprak, İnayet Burcu, and Nafel Dogdu. 2024. "Multi-Objective Optimization Study on Production of AlSi10Mg Alloy by Laser Powder Bed Fusion" Applied Sciences 14, no. 22: 10584. https://doi.org/10.3390/app142210584
APA StyleToprak, İ. B., & Dogdu, N. (2024). Multi-Objective Optimization Study on Production of AlSi10Mg Alloy by Laser Powder Bed Fusion. Applied Sciences, 14(22), 10584. https://doi.org/10.3390/app142210584