Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Checkerboard Resolution Test and Restoring Resolution Test
3.2. Three-Dimensional S-Wave Velocity Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1–52. [Google Scholar] [CrossRef]
- Xu, W.-L.; Pei, F.-P.; Wang, F.; Meng, E.; Ji, W.-Q.; Yang, D.-B.; Wang, W. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Fyfe, W.S. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K–Ar geochronology. Tectonophysics 2001, 339, 385–401. [Google Scholar] [CrossRef]
- Pan, B.; Liu, G.; Cheng, T.; Zhang, J.; Sun, Z.; Ma, B.; Wu, H.; Liang, G.; Guo, M.; Kong, Q.; et al. Development and status of active volcano monitoring in China. Act. Volcanoes China 2021, 510, 227–252. [Google Scholar] [CrossRef]
- Zhao, D.; Lei, J.; Tang, R. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chin. Sci. Bull. 2004, 49, 1401–1408. [Google Scholar] [CrossRef]
- Lei, J.; Zhao, D. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 2005, 397, 281–295. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, Y. Changbai intraplate volcanism and deep earthquakes in East Asia: A possible link? Geophys. J. Int. 2013, 195, 706–724. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Zhao, P. Dispersion Curve Interpolation Based on Kriging Method. Appl. Sci. 2023, 13, 2557. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, H.; Zhao, D.; Liu, C.; Feng, X.; Liu, T.; Ma, J. Mantle transition zone structure beneath the Changbai volcano: Insight into deep slab dehydration and hot upwelling near the 410 km discontinuity. J. Geophys. Res. Solid Earth 2016, 121, 5794–5808. [Google Scholar] [CrossRef]
- Zhu, H.; Tian, Y.; Zhao, D.; Li, H.; Liu, C. Seismic Structure of the Changbai Intraplate Volcano in NE China From Joint Inversion of Ambient Noise and Receiver Functions. J. Geophys. Res. Solid Earth 2019, 124, 4984–5002. [Google Scholar] [CrossRef]
- Shao, J.A.; Zhang, L.Q.; Xiao, Q.H.; Li, X.B. Rising of Da Hinggan Mts in Mesozonic: A possible mechanism of intracontinental orogeny. Acta Petrol. Sin. 2005, 23, 789–794. [Google Scholar]
- Liu, J. Study on geochronology of the Cenozoic volcanic rocks in northeast China. Acta Petrol. Sin. 1987, 3, 21–31. [Google Scholar]
- Liu, J.; Guo, Z.; Liu, Q. Volcanic hazards and monitoring. Quat. Sci. 1999, 19, 414–422. [Google Scholar]
- Bai, Z.D.; Tian, M.Z.; Wu, F.D.; Xu, D.B.; Li, T.J. Yanshan, Gaoshan-Two Active Volcanoes of the Volcanic Cluster in Arshan, Inner Mongolia. Earthq. Res. China 2005, 21, 113–117. [Google Scholar]
- Tang, J.; Wang, J.; Chen, X.; Zhao, G.; Zhan, Y. Preliminary investigation for electric conductivity structure of the crust and upper mantle beneath the Aershan volcano area. Chin. J. Geophys. 2005, 48, 196–202. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, Q. Yanshan and Gao Shan Volcanoes in the Daxingan mounta in range—A new eruption style. Seismol. Geol. 2010, 32, 28–37. [Google Scholar]
- Ho, K.-S.; Ge, W.-C.; Chen, J.-C.; You, C.-F.; Yang, H.-J.; Zhang, Y.-L. Late Cenozoic magmatic transitions in the central Great Xing’an Range, Northeast China: Geochemical and isotopic constraints on petrogenesis. Chem. Geol. 2013, 352, 1–18. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Q. Velocity structure in upper mantle and its implications for the volcanism near by the north edge of Songliao Basin. Chin. J. Geophys. 2019, 62, 2918–2929. [Google Scholar]
- Zhang, F.; Wu, Q.; Li, Y. The traveltime tomography study by teleseismic P wave data in the Northeast Chinese area. Chin. J. Geophys. 2013, 56, 2690–2700. [Google Scholar]
- Zhang, F.; Wu, Q.; Li, Y.; Zhang, R. The deep seismic velocity structures beneath volcanoes in GreatXing’an Range and volcanichanism. Chin. J. Geophys. 2022, 65, 1271–1287. [Google Scholar]
- Gu, X. Geochemical Characteristics and Evolution Mechanism of Thermal and Mineral Springs in Arxan. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2018. [Google Scholar]
- Cui, Y.; Sun, F.; Liu, L.; Xie, C.; Li, J.; Chen, Z.; Li, Y.; Du, J. Contribution of deep-earth fluids to the geothermal system: A case study in the Arxan volcanic region, northeastern China. Front. Earth Sci. 2023, 10, 996583. [Google Scholar] [CrossRef]
- Li, J.; Tian, Y.; Zhao, D.; Yan, D.; Li, Z.; Li, H. Magmatic System and Seismicity of the Arxan Volcanic Group in Northeast China. Geophys. Res. Lett. 2023, 50, e2022GL101105. [Google Scholar] [CrossRef]
- Pan, X.; Gu, G.; Han, D.; Bao, B.; Guan, S.; Song, Y. Investigation of hot spring gas components and soil gas fluxes in Arxan Holocene volcanic field, Inner Mongolia, NE China. Front. Earth Sci. 2023, 11, 1174315. [Google Scholar] [CrossRef]
- Zhao, D.; Maruyama, S.; Omori, S. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res. 2007, 11, 120–131. [Google Scholar] [CrossRef]
- Lei, J.; Xie, F.; Fan, Q.; Santosh, M. Seismic imaging of the deep structure under the Chinese volcanoes: An overview. Phys. Earth Planet. Inter. 2013, 224, 104–123. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.J.; Ning, J.; Feng, Y.; Grand, S.P.; Niu, F.; Kawakatsu, H.; Tanaka, S.; Obayashi, M.; Ni, J. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data. Earth Planet. Sci. Lett. 2015, 416, 1–11. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.J.; Ning, J.; Yang, Y.; Afonso, J.C.; Tang, Y. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth Planet. Sci. Lett. 2016, 433, 31–43. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, F.; Chen, M.; Yang, W. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography. Earth Planet. Sci. Lett. 2017, 461, 20–29. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Q.; Li, Y. The traveltime tomography study by teleseismic S wave data in the Northeast Chinese area. Chin. J. Geophys. 2014, 57, 88–101. [Google Scholar]
- Han, J.; Kang, J.; Liu, C.; Liu, W.; Zhang, Y.; Wang, T.; Guo, Z.; Yuan, T.; Liu, L. Characteristics of the asthenosphere structure beneath the eastern segment of the Central Asia orogenic belt inferred from a long-period magnetotelluric survey. Chin. J. Geophys. 2019, 62, 1148–1158. [Google Scholar]
- Yan, D.; Tian, Y.; Zhao, D.; Li, H. Thermal and rheological structure of lithosphere beneath Northeast China. Tectonophysics 2022, 840, 229560. [Google Scholar] [CrossRef]
- Shapiro, N.M.; Campillo, M.; Stehly, L.; Ritzwoller, M.H. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science 2005, 307, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Van Der Hilst, R.D.; De Hoop, M.V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int. 2006, 166, 732–744. [Google Scholar] [CrossRef]
- Bensen, G.D.; Ritzwoller, M.H.; Barmin, M.P.; Levshin, A.L.; Lin, F.; Moschetti, M.P.; Shapiro, N.M.; Yang, Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 2007, 169, 1239–1260. [Google Scholar] [CrossRef]
- Yang, Y.; Ritzwoller, M.H.; Jones, C.H. Crustal structure determined from ambient noise tomography near the magmatic centers of the Coso region, southeastern California. Geochem. Geophys. Geosystems. 2011, 12, Q02009. [Google Scholar] [CrossRef]
- Yang, Y.; Ritzwoller, M.H.; Levshin, A.L.; Shapiro, N.M. Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int. 2007, 168, 259–274. [Google Scholar] [CrossRef]
- Shen, W.; Ritzwoller, M.H.; Kang, D.; Kim, Y.; Lin, F.-C.; Ning, J.; Wang, W.; Zheng, Y.; Zhou, L. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int. 2016, 206, 954–979. [Google Scholar] [CrossRef]
- Masterlark, T.; Haney, M.; Dickinson, H.; Fournier, T.; Searcy, C. Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography. J. Geophys. Res. Solid Earth 2010, 115, B02409. [Google Scholar] [CrossRef]
- Nagaoka, Y.; Nishida, K.; Aoki, Y.; Takeo, M.; Ohminato, T. Seismic imaging of magma chamber beneath an active volcano. Earth Planet. Sci. Lett. 2012, 333–334, 1–8. [Google Scholar] [CrossRef]
- Seats, K.J.; Lawrence, J.F. The seismic structure beneath the Yellowstone Volcano Field from ambient seismic noise. Geophys. Res. Lett. 2014, 41, 8277–8282. [Google Scholar] [CrossRef]
- Lin, F.-C.; Li, D.; Clayton, R.W.; Hollis, D. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics 2013, 78, Q45–Q56. [Google Scholar] [CrossRef]
- Fang, H.; Yao, H.; Zhang, H.; Huang, Y.-C.; van der Hilst, R.D. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophys. J. Int. 2015, 201, 1251–1263. [Google Scholar] [CrossRef]
- Li, Z.; Ni, S.; Zhang, B.; Bao, F.; Zhang, S.; Deng, Y.; Yuen, D.A. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophys. Res. Lett. 2016, 43, 4954–4961. [Google Scholar] [CrossRef]
- Goldstein, P.; Snoke, A. SAC Availability for the IRIS Community. Inc. Inst. Seismol. Data Manag. Cent. Electron. Newsl. 2005, 7, 875360. [Google Scholar]
- Herrmann, R.B. Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismol. Res. Lett. 2013, 84, 1081–1088. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, X.; Song, X.; Yang, Y.; Ritzwoller, M.H. Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst. 2008, 9, 1–8. [Google Scholar] [CrossRef]
- Sun, X.; Song, X.; Zheng, S.; Yang, Y.; Ritzwoller, M.H. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthq. Sci. 2010, 23, 449–463. [Google Scholar] [CrossRef]
- Xu, Z.J.; Song, X.; Zheng, S. Shear velocity structure of crust and uppermost mantle in China from surface wave tomography using ambient noise and earthquake data. Earthq. Sci. 2013, 26, 267–281. [Google Scholar] [CrossRef]
- Bao, X.; Song, X.; Li, J. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett. 2015, 417, 132–141. [Google Scholar] [CrossRef]
- Brocher, T.M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Rawlinson, N.; Sambridge, M. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int. 2004, 156, 631–647. [Google Scholar] [CrossRef]
- Toomey, D.R.; Foulger, G.R. Tomographic inversion of local earthquake data from the Hengill-Grensdalur Central Volcano Complex, Iceland. J. Geophys. Res. Solid Earth 1989, 94, 17497–17510. [Google Scholar] [CrossRef]
- Miyano, K.; Aizawa, K.; Matsushima, T.; Shito, A.; Shimizu, H. Seismic velocity structure of Unzen Volcano, Japan, and relationship to the magma ascent route during eruptions in 1990–1995. Sci. Rep. 2021, 11, 22407. [Google Scholar] [CrossRef]
- Yan, D.; Tian, Y.; Zhao, D.; Li, H. Seismicity and Magmatic System of the Changbaishan Intraplate Volcano in East Asia. J. Geophys. Res. Solid Earth 2023, 128, e2023JB026853. [Google Scholar] [CrossRef]
- Linqi, X. On the evolution of volcanic magma from Wudalianchi. Acta Petrol. Sin. 1990, 6, 13–29+97. [Google Scholar]
- Schmincke, H.U. Volcanism; Springer: Berlin/Heidelberg, Germany, 2004; pp. 35–41, 209–228. [Google Scholar]
- Bardintzeff, J.M.; McBirney, A.R. Volcanology; Jones and Bartlett Publishers: Sudbury, MA, USA, 2000; pp. 76–81. [Google Scholar]
- Farrell, J.; Smith, R.B.; Husen, S.; Diehl, T. Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys. Res. Lett. 2014, 41, 3068–3073. [Google Scholar] [CrossRef]
- Huang, H.-H.; Lin, F.-C.; Schmandt, B.; Farrell, J.; Smith, R.B.; Tsai, V.C. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 2015, 348, 773–776. [Google Scholar] [CrossRef]
- Díaz, D.; Heise, W.; Zamudio, F. Three-dimensional resistivity image of the magmatic system beneath Lastarria volcano and evidence for magmatic intrusion in the back arc (northern Chile). Geophys. Res. Lett. 2015, 42, 5212–5218. [Google Scholar] [CrossRef]
- Liu, B.; Tong, W.; Zhang, B.; Zhang, Z. Microseismic obvervation in tengchong volcano-geothermal region. Chin. J. Geophys. 1986, 29, 547–556. [Google Scholar]
- Gilpin, B.; Lee, T.-C. A microearthquake study in the Salton Sea geothermal area, California. Bull. Seismol. Soc. Am. 1978, 68, 441–450. [Google Scholar] [CrossRef]
- Husen, S.; Smith, R.B.; Waite, G.P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 2004, 131, 397–410. [Google Scholar] [CrossRef]
- Jaxybulatov, K.; Shapiro, N.M.; Koulakov, I.; Mordret, A.; Landès, M.; Sens-Schönfelder, C. A large magmatic sill complex beneath the Toba caldera. Science 2014, 346, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Ma, J.; Liu, C.; Feng, X.; Liu, T.; Zhu, H.; Yan, D.; Li, H. Effects of subduction of the western Pacific plate on tectonic evolution of Northeast China and geodynamic implications. Chin. J. Geophys. 2019, 62, 1071–1082. [Google Scholar]
- Ma, J.; Tian, Y.; Liu, C.; Zhao, D.; Feng, X.; Zhu, H. P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics. Phys. Earth Planet. Inter. 2018, 274, 105–126. [Google Scholar] [CrossRef]
- He, Y.; Chen, Q.-F.; Chen, L.; Wang, X.; Guo, G.; Li, T.; Zhang, K.; Li, J.; Chen, Y. Distinct Lithospheric Structure in the Xing’an-Mongolian Orogenic Belt. Geophys. Res. Lett. 2022, 49, e2021GL097283. [Google Scholar] [CrossRef]
- Fan, X.; Chen, Q.-F.; Ai, Y.; Chen, L.; Jiang, M.; Wu, Q.; Guo, Z. Quaternary sodic and potassic intraplate volcanism in northeast China controlled by the underlying heterogeneous lithospheric structures. Geology 2021, 49, 1260–1264. [Google Scholar] [CrossRef]
- Chu, R.; Helmberger, D.V.; Sun, D.; Jackson, J.M.; Zhu, L. Mushy magma beneath Yellowstone. Geophys. Res. Lett. 2010, 37, L01306. [Google Scholar] [CrossRef]
- Cashman, K.V.; Sparks, R.S.J.; Blundy, J.D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 2017, 355, eaag3055. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W. New, improved version of generic mapping tools released. Eos. Trans. AGU 1998, 79, 579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Tian, Y.; Liu, C.; Li, H. Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array. Appl. Sci. 2024, 14, 10596. https://doi.org/10.3390/app142210596
Qu L, Tian Y, Liu C, Li H. Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array. Applied Sciences. 2024; 14(22):10596. https://doi.org/10.3390/app142210596
Chicago/Turabian StyleQu, Lijuan, You Tian, Cai Liu, and Hongli Li. 2024. "Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array" Applied Sciences 14, no. 22: 10596. https://doi.org/10.3390/app142210596
APA StyleQu, L., Tian, Y., Liu, C., & Li, H. (2024). Shallow Magmatic System of Arxan Volcano Revealed by Ambient Noise Tomography with Dense Array. Applied Sciences, 14(22), 10596. https://doi.org/10.3390/app142210596