Reducing Safety Risks in Construction Tower Crane Operations: A Dynamic Path Planning Model
Abstract
:1. Introduction
2. A Dynamic Path Planning Model for Tower Crane Operations
2.1. Path Information Collection Module
2.2. Path Safety Risk Evaluation Module
- Input Module: This module is used for preprocessing images to ensure they can be correctly handled by the model. Generally, the main tasks of the input module include resizing, normalizing, and padding the images. All YOLO algorithms require input images to be converted to a fixed size before being fed into the detection model for training. The standardized image size designed for this study is 640 × 640 × 3.
- Backbone Module: This module is built based on CNN. The convolutional layers (Conv) are used to extract and process features from the input feature map, capturing richer semantic information. CSP Bottleneck with 2 Convolutions (C2f) consists of 1 × 1 convolution layers and multiple Bottleneck layers, focusing on processing and merging features to extract more detailed feature information. Spatial Pyramid Pooling—Fast (SPPF) is a variant of spatial pyramid pooling used to perform pooling operations at different scales and integrate the results to extract multi-scale feature information, thereby enhancing the understanding and processing of targets of varying sizes.
- Task Head Module: This module is constructed based on the Path Aggregation Network (PAN) framework, which integrates concepts from the Feature Pyramid Network (FPN). Up-sampling and contact modules for up-sampling and connection are utilized, which enhances the effective use of multi-scale feature information in instance segmentation tasks, thereby improving detection accuracy and robustness.
2.3. Path Planning Module
- Rotation Radius:, , where .
- Velocity Constraints: , , where , are linear and angular velocities, respectively.
- Acceleration Constraints: , , where are the current linear and angular accelerations and are their respective maximum values.
- Braking Distance Constraint: , where is the distance from the simulated trajectory to the nearest obstacle.
- Initially assess the distance L1 from the tower crane to the material storage area and the distance L2 to the worker’s operation area.
- If L1 > L2, initialize the motion mode to linear movement of the trolley to reduce the rotation radius, adjusting the crane’s rotation radius L1 to L2.
- Throughout the operation, if the forward path encounters critical equipment, switch the motion mode to minimize the radius for obstacle avoidance. Upon successful avoidance, revert to the rotation mode.
- If the path ahead encounters ground workers, increase the radius for obstacle avoidance until the rotation radius aligns with the endpoint.
- Finally, perform trolley extension to safely transport the load to the destination.
- The path optimization strategy is as follows: Begin by assessing the distance L1 from the tower crane to the starting point of the worker’s operation area and the distance L2 to the endpoint.
- If L1 < L2, directly engage the rotation movement.
- During operation, if the forward path encounters ground workers, switch the motion mode for obstacle avoidance. Upon successful avoidance, revert to the rotation mode.
- Continue rotating until the rotation radius aligns with the endpoint, and then execute trolley extension to safely transport the load to the destination.
3. Experimental Simulation
3.1. Instance Segmentation Experiment
3.2. Path Planning Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussein, M.; Zayed, T. Crane operations and planning in modular integrated construction: Mixed review of literature. Autom. Constr. 2021, 122, 103466. [Google Scholar] [CrossRef]
- China News. Crane Collapse in Western India Kills 20 and Injures 3. [WWW Document]. 2023. Available online: https://www.chinanews.com.cn/gj/2023/08-02/10054165.shtml (accessed on 2 November 2024).
- China News. A Crane Collapse Accident Occurred in Turin, Italy, Resulting in 3 Deaths and 3 Injuries. [WWW Document]. 2021. Available online: https://www.chinanews.com.cn/gj/2021/12-20/9633902.shtml (accessed on 2 November 2024).
- Chen, J.; Chi, H.-L.; Du, Q.; Wu, P. Investigation of Operational Concerns of Construction Crane Operators: An Approach Integrating Factor Clustering and Prioritization. J. Manag. Eng. 2022, 38, 04022020. [Google Scholar] [CrossRef]
- Hu, S.; Fang, Y.; Moehler, R. Estimating and visualizing the exposure to tower crane operation hazards on construction sites. Saf. Sci. 2023, 160, 106044. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Jiang, L.; Zhao, T. Identification of Critical Causes of Tower-Crane Accidents through System Thinking and Case Analysis. J. Constr. Eng. Manag. 2020, 146, 04020071. [Google Scholar] [CrossRef]
- Cheng, T.; Teizer, J. Modeling Tower Crane Operator Visibility to Minimize the Risk of Limited Situational Awareness. J. Comput. Civ. Eng. 2014, 28, 04014004. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, H.; Ding, Q.; Li, H.; Skitmore, M. An experimental study of real-time identification of construction workers’ unsafe behaviors. Autom. Constr. 2017, 82, 193–206. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, Z.; Zhang, J.; Li, W.; Gao, C. A Digital Twin-Based Operation Status Monitoring System for Port Cranes. Sensors 2022, 22, 3216. [Google Scholar] [CrossRef]
- Lai, X.; Wang, S.; Guo, Z.; Zhang, C.; Sun, W.; Song, X. Designing a Shape–Performance Integrated Digital Twin Based on Multiple Models and Dynamic Data: A Boom Crane Example. J. Mech. Des. 2021, 143, 071703. [Google Scholar] [CrossRef]
- Jang, Y.; Jeong, I.; Younesi Heravi, M.; Sarkar, S.; Shin, H.; Ahn, Y. Multi-Camera-Based Human Activity Recognition for Human–Robot Collaboration in Construction. Sensors 2023, 23, 6997. [Google Scholar] [CrossRef]
- Kang, K.-S.; Cho, Y.-W.; Jin, K.-H.; Kim, Y.-B.; Ryu, H.-G. Application of one-stage instance segmentation with weather conditions in surveillance cameras at construction sites. Autom. Constr. 2022, 133, 104034. [Google Scholar] [CrossRef]
- Kamoona, A.M.; Gostar, A.K.; Tennakoon, R.; Bab-Hadiashar, A.; Accadia, D.; Thorpe, J.; Hoseinnezhad, R. Random Finite Set-Based Anomaly Detection for Safety Monitoring in Construction Sites. IEEE Access 2019, 7, 105710–105720. [Google Scholar] [CrossRef]
- Yang, Z.; Yuan, Y.B.; Zhang, M.Y.; Zhao, X.F.; Zhang, Y.; Tian, B.Q. Safety Distance Identification for Crane Drivers Based on Mask R-CNN. Sensors 2019, 19, 2789. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.G.; Zhang, J.N.; Cai, C.X.; Chen, Q.; Zhao, Y.; Lou, Y.M.; Jiang, W.; Gui, G. CNN-Based Intelligent Safety Surveillance in Green IoT Applications. China Commun. 2021, 18, 108–119. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Yang, B.; Zhang, B. Vision-Based Automated Recognition and 3D Localization Framework for Tower Cranes Using Far-Field Cameras. Sensors 2023, 23, 4851. [Google Scholar] [CrossRef]
- Liu, Z.; Chu, Y.; Li, G.; Hildre, H.P.; Zhang, H. A co-simulation approach to onboard support of marine operation: A Palfinger crane path planning case. Simulation 2024, 100, 919–930. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, R.; Liu, W.; Chen, H. A time optimal trajectory planning method for offshore cranes with ship roll motions. J. Frankl. Inst. 2022, 359, 6099–6122. [Google Scholar] [CrossRef]
- Lu, B.; Lin, J.; Fang, Y.; Hao, Y.; Cao, H. Online trajectory planning for three-dimensional offshore boom cranes. Autom. Constr. 2022, 140, 104372. [Google Scholar] [CrossRef]
- Burkhardt, M.; Gienger, A.; Sawodny, O. Optimization-Based Multipoint Trajectory Planning Along Straight Lines for Tower Cranes. IEEE Trans. Control Syst. Technol. 2024, 32, 290–297. [Google Scholar] [CrossRef]
- Li, X.; Chi, H.-l.; Wu, P.; Shen, G.Q. Smart work packaging-enabled constraint-free path re-planning for tower crane in prefabricated products assembly process. Adv. Eng. Inform. 2020, 43, 101008. [Google Scholar] [CrossRef]
- Yu, L.; Huang, M.M.; Jiang, S.; Wang, C.; Wu, M. Unmanned aircraft path planning for construction safety inspections. Autom. Constr. 2023, 154, 105005. [Google Scholar] [CrossRef]
- Yao, M.; Feng, X.; Li, P.; Li, Y.; Peng, Z.; Lu, Z. Object-level complete coverage path planning for excavators in earthwork construction. Sci. Rep. 2023, 13, 12818. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Abdi, E.; Chea, C.P.; Bai, Y. Global path planning for autonomous construction vehicles in building construction: A comparative study with a focus on vehicle kinematic characteristics. J. Build. Eng. 2024, 93, 109837. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, Z.; Pan, W. Technologies, levels and directions of crane-lift automation in construction. Autom. Constr. 2023, 153, 104960. [Google Scholar] [CrossRef]
- Du, X.; Yu, X.-Z.; Yun, X.-Y. Scenario modeling and operation path planning of autonomous driving tower cranes. J. Phys. Conf. Ser. 2022, 2365, 012020. [Google Scholar] [CrossRef]
- Lin, X.; Han, Y.; Guo, H.; Luo, Z.; Guo, Z. Lift path planning for tower cranes based on environmental point clouds. Autom. Constr. 2023, 155, 105046. [Google Scholar] [CrossRef]
- Assadzadeh, A.; Arashpour, M.; Bab-Hadiashar, A.; Ngo, T.; Li, H. Automatic far-field camera calibration for construction scene analysis. Comput. Aided Civ. Infrastruct. Eng. 2021, 36, 1073–1090. [Google Scholar] [CrossRef]
- Chian, E.Y.T.; Goh, Y.M.; Tian, J.; Guo, B.H.W. Dynamic identification of crane load fall zone: A computer vision approach. Saf. Sci. 2022, 156, 105904. [Google Scholar] [CrossRef]
- Occupational Safety and Health Administration. [WWW Document]. 2010. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1926/1926.1401 (accessed on 27 September 2024).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Wu, X.; He, Z.; Liu, S.; Yu, Z. Visual Modeling Method for Ship Piping Network Programs in Engine Simulators. Appl. Sci. 2024, 14, 9194. [Google Scholar] [CrossRef]
- Zhao, S.; Kang, F.; He, L.; Li, J.; Si, Y.; Xu, Y. Intelligent Structural Health Monitoring and Noncontact Measurement Method of Small Reservoir Dams Using UAV Photogrammetry and Anomaly Detection. Appl. Sci. 2024, 14, 9156. [Google Scholar] [CrossRef]
- He, X.; Ma, P.; Chen, Y.; Liu, Y. An Automatic Reflective Clothing Detection Algorithm Based on YOLOv5 for Work Type Recognition. In Proceedings of the 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Chengdu, China, 3–5 August 2022; pp. 396–401. [Google Scholar] [CrossRef]
- Demetriou, D.; Mavromatidis, P.; Robert, P.M.; Papadopoulos, H.; Petrou, M.F.; Nicolaides, D. Real-time construction demolition waste detection using state-of-the-art deep learning methods; single-stage vs two-stage detectors. Waste Manag. 2023, 167, 194–203. [Google Scholar] [CrossRef]
- Wu, L.; Chen, L.; Li, J.; Shi, J.; Wan, J. SNW YOLOv8: Improving the YOLOv8 network for real-time monitoring of lump coal. Meas. Sci. Technol. 2024, 35, 105406. [Google Scholar] [CrossRef]
- Ni, Y.; Huo, J.; Hou, Y.; Wang, J.; Guo, P. Detection of Underground Dangerous Area Based on Improving YOLOV8. Electronics 2024, 13, 623. [Google Scholar] [CrossRef]
- Li, S.; Huang, H.; Meng, X.; Wang, M.; Li, Y.; Xie, L. A Glove-Wearing Detection Algorithm Based on Improved YOLOv8. Sensors 2023, 23, 9906. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, S.; Kamat, V.R. Proximity Prediction of Mobile Objects to Prevent Contact-Driven Accidents in Co-Robotic Construction. J. Comput. Civ. Eng. 2020, 34, 04020022. [Google Scholar] [CrossRef]
- Son, H.; Seong, H.; Choi, H.; Kim, C. Real-Time Vision-Based Warning System for Prevention of Collisions between Workers and Heavy Equipment. J. Comput. Civ. Eng. 2019, 33, 04019029. [Google Scholar] [CrossRef]
- Zhang, M.; Ge, S. Vision and Trajectory–Based Dynamic Collision Prewarning Mechanism for Tower Cranes. J. Constr. Eng. Manag. 2022, 148, 04022057. [Google Scholar] [CrossRef]
- Kobayashi, M.; Motoi, N. Local Path Planning: Dynamic Window Approach With Virtual Manipulators Considering Dynamic Obstacles. IEEE Access 2022, 10, 17018–17029. [Google Scholar] [CrossRef]
- Hou, J.T.; Jiang, W.S.; Luo, Z.; Yang, L.; Hu, X.F.; Guo, B. Dynamic Path Planning for Mobile Robots by Integrating Improved Sparrow Search Algorithm and Dynamic Window Approach. Actuators 2024, 13, 24. [Google Scholar] [CrossRef]
- Yao, M.; Deng, H.; Feng, X.; Li, P.; Li, Y.; Liu, H. Improved dynamic windows approach based on energy consumption management and fuzzy logic control for local path planning of mobile robots. Comput. Ind. Eng. 2024, 187, 109767. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, W.; Xu, M.; Huang, L.; Shi, K.; Zou, C.; Chen, B. Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm. Sensors 2023, 23, 8260. [Google Scholar] [CrossRef]
- Chang, L.; Shan, L.; Jiang, C.; Dai, Y. Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment. Auton. Robot. 2021, 45, 51–76. [Google Scholar] [CrossRef]
- Yang, Z.; Li, N.; Zhang, Y.; Li, J. Mobile Robot Path Planning Based on Improved Particle Swarm Optimization and Improved Dynamic Window Approach. J. Robot. 2023, 2023, 6619841. [Google Scholar] [CrossRef]
- Liu, A.; Liu, C.; Li, L.; Wang, R.; Lu, Z. An improved fuzzy-controlled local path planning algorithm based on dynamic window approach. J. Field Robot. 2024, 1–25. [Google Scholar] [CrossRef]
- Yang, D.; Su, C.; Wu, H.; Xu, X.; Zhao, X. Construction of Novel Self-Adaptive Dynamic Window Approach Combined With Fuzzy Neural Network in Complex Dynamic Environments. IEEE Access 2022, 10, 104375–104383. [Google Scholar] [CrossRef]
- You, C.; Kong, H. Improved Steel Surface Defect Detection Algorithm Based on YOLOv8. IEEE Access 2024, 12, 99570–99577. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, W.; Duan, X.; Wei, J.; Hu, T.; Yu, J.; Huang, J. DSW-YOLOv8n: A New Underwater Target Detection Algorithm Based on Improved YOLOv8n. Electronics 2023, 12, 3892. [Google Scholar] [CrossRef]
Device | Configuration |
---|---|
Computer | Lenovo G5000 IRH8 (Lenovo Corporation, Beijing, China) |
Operation system | Windows 11 (64-bit) |
CPU | 13th Gen Intel® Core™ i7-13700H 2.40 GHz |
RAM | 16 G |
GPU | NVIDIA RTX4060 Laptop GPU, 8 G |
GPU accelerator | Cuda 11.7 |
Framework | Pytorch 1.13.0 |
Scripting language | Python 3.8 |
Class | Precision | Recall | [email protected] |
---|---|---|---|
Worker | 0.985 | 0.992 | 0.99 |
Hook | 0.975 | 0.994 | 0.99 |
Scenario | Number of Workers | Starting Point S | End Point E |
---|---|---|---|
E1 | 6~8 | (−36, 10) | (10, 30) |
E2 | 6~8 | (18, 2) | (2,30) |
Parameter | Value |
---|---|
Maximum linear velocity (m/s) | 1 |
Minimum linear velocity (m/s) | −1 |
Maximum angular velocity (degree/s) | 7.98 |
Minimum angular velocity (degree/s) | −7.98 |
Linear acceleration (m/s2) | 0.5 |
Angular acceleration (degree/s2) | 15 |
Linear velocity resolution (m/s) | 0.1 |
Angular acceleration resolution (rad/s) | 2 |
Safety distance (m) | 1.5 |
Simulation prediction time (s) | 1 |
Unit time Δt (s) | 0.5 |
Detection window range (m) | 2 |
Maximum rotation radius (m) | 55 |
Minimum rotation radius (m) | 10 |
Method | Scenario | Metric | Path Length (m) | Number of Obstacle Avoidance Failures |
---|---|---|---|---|
TC-DWA | E1 | Mean | 71.22 | 0 |
E1 | SD | 16.51 | 0 | |
E2 | Mean | 42.49 | 0 | |
E2 | SD | 11.06 | 0 | |
APF | E1 | Mean | 49.32 | 1.38 |
E1 | SD | 0.23 | 1.52 | |
E2 | Mean | 31.19 | 1.62 | |
E2 | SD | 0.44 | 1.47 | |
RRT | E1 | Mean | 67.05 | 33.76 |
E1 | SD | 3.58 | 26.94 | |
E2 | Mean | 39.39 | 77.27 | |
E2 | SD | 1.70 | 20.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, B.; Ye, Z.; Chen, S.; Liang, X. Reducing Safety Risks in Construction Tower Crane Operations: A Dynamic Path Planning Model. Appl. Sci. 2024, 14, 10599. https://doi.org/10.3390/app142210599
Cai B, Ye Z, Chen S, Liang X. Reducing Safety Risks in Construction Tower Crane Operations: A Dynamic Path Planning Model. Applied Sciences. 2024; 14(22):10599. https://doi.org/10.3390/app142210599
Chicago/Turabian StyleCai, Binqing, Zhukai Ye, Shiwei Chen, and Xun Liang. 2024. "Reducing Safety Risks in Construction Tower Crane Operations: A Dynamic Path Planning Model" Applied Sciences 14, no. 22: 10599. https://doi.org/10.3390/app142210599
APA StyleCai, B., Ye, Z., Chen, S., & Liang, X. (2024). Reducing Safety Risks in Construction Tower Crane Operations: A Dynamic Path Planning Model. Applied Sciences, 14(22), 10599. https://doi.org/10.3390/app142210599