An Integrated Approach to Develop Innovative, Sustainable, and Effective Cosmetic Ingredients: The Case Report of Fatty-Acids-Enriched Wild Strawberry Waste Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. SCO2 Extraction Procedure
2.3. GC–MS Analysis of Wild Strawberry Fatty Acids in Waste and SCO2 Extract
2.4. In Vitro Modulation of the Expression of 5α-Reductase Gene in Skin Fibroblasts
2.5. Life Cycle Assessment (LCA) Analysis of WSWSCO2 Extract
3. Results
3.1. GC–MS Analysis of Wild Strawberry Fatty Acids in Waste and SCO2 Extract
3.2. In Vitro Modulation of the Expression of 5α-Reductase Gene in Skin Fibroblasts
3.3. Life Cycle Assessment (LCA) Analysis of WSWSCO2 Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahota, A. Sustainability: How the Cosmetics Industry Is Greening Up, 1st ed.; John Wiley & Sons Ltd.: London, UK, 2014; Volume 3. [Google Scholar]
- Kolling, C.; Ribeiro, J.L.D.; De Medeiros, J.F. Performance of the cosmetics industry from the perspective of Corporate Social Responsibility and Design for Sustainability. Sustain. Prod. Consum. 2022, 30, 171–185. [Google Scholar] [CrossRef]
- Acharya, S.; Bali, S.; Bhatia, B.S. Exploring Consumer Behaviour towards Sustainability of Green Cosmetics. In Proceedings of the International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021. [Google Scholar]
- Rocca, R.; Acerbi, F.; Fumagalli, L.; Taisch, M. Development of an LCA-based tool to assess the environmental sustainability level of cosmetics products. Int. J. Life Cycle Assess. 2023, 28, 1261–1285. [Google Scholar] [CrossRef]
- Rocca, R.; Acerbi, F.; Fumagalli, L.; Taisch, M. Sustainability paradigm in the cosmetics industry: State of the art. Clean. Waste Syst. 2022, 3, 100057. [Google Scholar] [CrossRef]
- Goyal, N.; Jerold, F. Biocosmetics: Technological advances and outlook. Environ. Sci. Pollut. Res. 2023, 30, 25148–25169. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Gao, B.; Zhong, D.; Wang, L.; Borrion, A.; Huang, W.; Xu, S.; Cui, S. Closing the food waste loop: Analysis of the agronomic performance and potential of food waste disposal products. J. Clean. Prod. 2023, 382, 135174. [Google Scholar] [CrossRef]
- Krzyżostan, M.; Wawrzyńczak, A.; Nowak, I. Use of Waste from the Food Industry and Applications of the Fermentation Process to Create Sustainable Cosmetic Products: A Review. Sustainability 2024, 16, 2757. [Google Scholar] [CrossRef]
- De Filette, M.; Schatteman, K.; Geuens, J. Characterization of Six Cold-Pressed Berry Seed Oils and Their Seed Meals. Appl. Sci. 2024, 14, 439. [Google Scholar] [CrossRef]
- Campalani, C.; Amadio, E.; Zanini, S.; Dall’Acqua, S.; Panozzo, M.; Ferrari, S.; De Nadai, G.; Francescato, S.; Selva, M.; Perosa, A. Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J. CO2 Util. 2020, 41, 101259. [Google Scholar] [CrossRef]
- Laroze, L.E.; Díaz-Reinoso, B.; Moure, A.; Zúñiga, M.; Domínguez, H. Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur. Food Res. Technol. 2010, 231, 669–677. [Google Scholar] [CrossRef]
- Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Karim, A.A.; Abbas, K.A.; Norulaini, N.A.N.; Omar, A.K.M. Application of supercritical CO2 in lipid extraction—A review. J. Food Eng. 2009, 95, 240–253. [Google Scholar] [CrossRef]
- Turhan, E.; Paydas Kargi, S. Strawberry Production in Turkey. Chron. Hortic. 2007, 47, 18–20. [Google Scholar]
- Jurgiel-Małecka, G.; Gibczyńska, M.; Siwek, H.; Buchwał, A. Comparison of fruits chemical composition of selected cultivars wild strawberry (Fragaria vesca L.). Eur. J. Hortic. Sci. 2017, 82, 204–210. [Google Scholar] [CrossRef]
- Grajzer, M.; Wiatrak, B.; Jawień, P.; Marczak, Ł.; Wojakowska, A.; Wiejak, R.; Rój, E.; Grzebieluch, W.; Prescha, A. Evaluation of Recovery Methods for Fragaria vesca L. Oil: Characteristics, Stability and Bioactive Potential. Foods 2023, 12, 1852. [Google Scholar] [CrossRef]
- Pilkington, S.M.; Watson, R.E.B.; Nicolaou, A.; Rhodes, L.E. Omega-3 polyunsaturated fatty acids: Photoprotective macronutrients. Exp. Dermatol. 2011, 20, 537–543. [Google Scholar] [CrossRef]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.C.; Kiezel-Tsugunova, M.; Brownbridge, L.C.; Harwood, J.L.; Nicolaou, A. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochim. Biophys Acta Biomembr. 2017, 1859 Pt B, 1679–1689. [Google Scholar] [CrossRef]
- Sawada, Y.; Saito-Sasaki, N.; Nakamura, M. Omega 3 Fatty Acid and Skin Diseases. Front. Immunol. 2021, 11, 623052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernard, F.X.; Barrault, C.; Deguercy, A.; de Wever, B.; Rosdy, M. Expression of type 1 5alpha-reductase and metabolism of testosterone in reconstructed human epidermis (SkinEthic®): A new model for screening skin-targeted androgen modulators. Int. J. Cosmet. Sci. 2000, 22, 397–407. [Google Scholar]
- Azzouni, F.; Godoy, A.; Yun, L.; Mohler, J. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases. Adv. Urol. 2012, 18, 530121. [Google Scholar] [CrossRef]
- Norman, A.W.; Henry, H.L. (Eds.) Chapter 12—Androgens. In Hormones, 3rd ed.; Academic Press: San Diego, CA, USA, 2015; pp. 255–273. [Google Scholar]
- Randall, V.A. Role of 5 alpha-reductase in health and disease. Baillieres Clin. Endocrinol. Metab. 1994, 8, 405–431. [Google Scholar] [CrossRef]
- Arboleda, V.A.; Vilain, E. Chapter 17—Disorders of sex development A2—Strauss, Jerome, F. In Yen & Jaffe’s Reproductive Endocrinology, 7th ed.; Barbieri, R.L., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2014; pp. 351–376.e355. [Google Scholar]
- Zouboulis, C.C.; Dessinioti, C.; Tsatsou, F.; Gollnick, H.P.M. Anti-acne drugs in phase 1 and 2 clinical trials. Expert Opin. Investig. Drugs. 2017, 26, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Somani, N.; Turvy, D. Hirsutism: An evidence-based treatment update. Am. J. Clin. Dermatol. 2014, 15, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Hirshburg, J.M.; Kelsey, P.A.; Therrien, C.A.; Gavino, A.C.; Reichenberg, J.S. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review. J. Clin. Aesthet. Dermatol. 2016, 9, 56–62. [Google Scholar]
- Trost, L.; Saitz, T.R.; Hellstrom, W.J. Side Effects of 5-Alpha Reductase Inhibitors: A Comprehensive Review. Sex. Med. Rev. 2013, 1, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Peron, G.; Santos, N.; Ferrarese, I.; Rizzo, F.; Bernabè, G.; Paccagnella, M.; Panozzo, M.; Francescato, S.; Castagliuolo, I.; Dall’Acqua, S.; et al. The beeswax processing by-product: A potential antibacterial ingredient for food and nutraceutical applications. Int. J. Food Sci. Technol. 2023, 58, 5549–5556. [Google Scholar] [CrossRef]
- Francescato, S. “Short supply-chain” saffron petal extracts for cosmetic applications obtained by a green and innovative extraction technique. In Proceedings of the IFSCC Congress 2020, Yokohama, Japan, 28 July 2020. [Google Scholar]
- Faggian, M.; Bernabè, G.; Ferrari, S.; Francescato, S.; Baratto, G.; Castagliuolo, I.; Dall’Acqua, S.; Peron, G. Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications. Antibiotics 2021, 10, 789. [Google Scholar] [CrossRef] [PubMed]
- Sut, S.; Maccari, E.; Zengin, G.; Ferrarese, I.; Loschi, F.; Faggian, M.; Paolo, B.; De Zordi, N.; Dall’Acqua, S. “Smart Extraction Chain” with Green Solvents: Extraction of Bioactive Compounds from Picea abies Bark Waste for Pharmaceutical, Nutraceutical and Cosmetic Uses. Molecules 2022, 27, 6719. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Temocico, G.; Fierascu, I.; Ortan, A.; Babeanu, N.E. Fragaria Genus: Chemical Composition and Biological Activities. Molecules 2020, 25, 498. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Morales, P.; Cámara, M.; Alves, M.J.; Oliveira, M.B.; Santos-Buelga, C.; Ferreira, I.C. Wild Fragaria vesca L. fruits: A rich source of bioactive phytochemicals. Food Funct. 2016, 7, 4523–4532. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Allkanjari, O.; Busetto, G.M.; Cai, T.; Larganà, G.; Magri, V.; Perletti, G.; Robustelli Della Cuna, F.S.; Russo, G.I.; Stamatiou, K.; et al. Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer. Arch. Ital. Di Urol. E Androl. 2019, 91, 139–152. [Google Scholar] [CrossRef]
- Habib, F.K.; Ross, M.; Ho, C.K.; Lyons, V.; Chapman, K. Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression. Int. J. Cancer 2005, 114, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Plosker, G.L.; Brogden, R.N. Serenoa repens (Permixon). A review of its pharmacology and therapeutic efficacy in benign prostatic hyperplasia. Drugs Aging 1996, 9, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Di Silverio, F.; Monti, S.; Sciarra, A.; Varasano, P.A.; Martini, C.; Lanzara, S.; D’Eramo, G.; Di Nicola, S.; Toscano, V. Effects of long-term treatment with Serenoa repens (Permixon) on the concentrations and regional distribution of androgens and epidermal growth factor in benign prostatic hyperplasia. Prostate 1998, 37, 77–83. [Google Scholar] [CrossRef]
- Geavlete, P.; Multescu, R.; Geavlete, B. Serenoa repens extract in the treatment of benign prostatic hyperplasia. Ther. Adv. Urol. 2011, 3, 193–198. [Google Scholar] [CrossRef]
- Schantz, M.M.; Bedner, M.; Long, S.E.; Molloy, J.L.; Murphy, K.E.; Porter, B.J.; Putzbach, K.; Rimmer, C.A.; Sander, L.C.; Sharpless, K.E.; et al. Development of saw palmetto (Serenoa repens) fruit and extract standard reference materials. Anal. Bioanal. Chem. 2008, 392, 427–438. [Google Scholar] [CrossRef]
- Azizi, A.; Mumin, N.H.; Shafqat, N. Phytochemicals with Anti 5-alpha-reductase Activity: A Prospective For Prostate Cancer Treatment. F1000Res 2021, 10, 221. [Google Scholar] [CrossRef]
- Abe, M.; Ito, Y.; Oyunzul, L.; Oki-Fujino, T.; Yamada, S. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract. Biol. Pharm. Bull. 2009, 32, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shimizu, K.; Kondo, R. Anti-androgenic activity of fatty acids. Chem. Biodivers. 2009, 6, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Kokare, S.; Oliveira, J.P.; Radu Godina, R. Life cycle assessment of additive manufacturing processes: A review. J. Manuf. Syst. 2023, 68, 536–559. [Google Scholar] [CrossRef]
Impact Category | Indicator | Unit | Final Weighting Factors (Scaled to 100) |
---|---|---|---|
Climate change | Radiative forcing as Global Warming Potential (GWP100) | kg CO2 eq | 21.06 |
Ozone depletion | Ozone Depletion Potential (ODP) | kg CFC-11 eq | 6.31 |
Human toxicity, cancer | Comparative Toxic Unit for humans (CTUh) | CTUh | 2.13 |
Human toxicity, non-cancer | Comparative Toxic Unit for humans (CTUh) | CTUh | 1.84 |
Particulate matter | Impact on human health | disease incidence | 8.96 |
Ionizing radiation, human health | Human exposure efficiency relative to U235 | kBq U235 eq | 5.01 |
Photochemical ozone formation, health | Tropospheric ozone concentration increase | kg NMVOC eq | 4.78 |
Acidification | Accumulated Exceedance (AE) | mol H+ eq | 6.20 |
Eutrophication, terrestrial | Accumulated Exceedance (AE) | mol N eq | 3.71 |
Eutrophication, freshwater | Fraction of nutrients reaching freshwater end compartment (P) | fresh water: kg P eq | 2.80 |
Eutrophication, marine | Fraction of nutrients reaching marine end compartment (N) | fresh water: kg N eq | 2.96 |
Ecotoxicity, freshwater | Comparative Toxic Unit for ecosystems (CTUe) | CTUe | 1.92 |
Land use | Soil quality index 85 | Dimensionless (pt) | 7.94 |
Biotic production | kg biotic production | ||
Erosion resistance | kg soil | ||
Mechanical filtration | m3 water | ||
Groundwater replenishment | m3 groundwater | ||
Water use | User deprivation potential (deprivation-weighted water consumption) | m3 world eq | 8.51 |
Resource use, minerals and | Abiotic resource depletion (ADP ultimate reserves) | kg Sb eq | 7.55 |
Resource use, fossils | Abiotic resource depletion—fossil fuels (ADP-fossil) | MJ | 8.32 |
R.T (min) | Abbreviation | Fatty Acid Identification | WS Waste mg/g | WSWSCO2 Extract mg/g |
---|---|---|---|---|
14.51 | C12:0 | Lauric acid | ND | 0.63 ± 0.03 |
19.18 | C14:0 | Myristic acid | ND | 0.61 ± 0.08 |
23.88 | C16:0 | Palmitic acid | 0.88 ± 0.04 | 23.71 ± 0.85 |
25.05 | C16:1 | Palmitoleic acid | ND | 0.84 ± 0.04 |
26.15 | C17:0 | Heptadecanoic acid | ND | 0.82 ± 0.03 |
28.35 | C18:0 | Stearic acid | 0.51 ± 0.03 | 27.63 ± 0.96 |
29.42 | C18:1 cis (n9) | Oleic acid | 1.80 | 105.10 ± 1.14 |
29.55 | C18:1 trans (n9) | Elaidic acid | ND | 4.11 ± 0.31 |
31.15 | C18:2 cis (n6) | Linoleic acid | 4.63 ± 0.31 | 242.32 ± 1.76 |
32.48 | C20:0 | Arachidic acid | ND | 17.54 ± 0.79 |
33.10 | C18:3 (n6) | Linolenic acid | 6.31 ± 0.45 | 331.30 ± 1.44 |
33.35 | C20:1 (n9) | cis-11 Eicosenoic acid | ND | 4.05 ± 0.24 |
35.01 | C20:2 (n6) | cis-11,14 Eicosadienoic acid | ND | 1.27 ± 0.11 |
36.25 | C22:0 | Behenic acid | ND | 5.81 ± 0.03 |
39.82 | C24:0 | Lignoceric acid | ND | 30.72 ± 0.64 |
Total | 14.13 | 796.45 | ||
Total saturated (SFA) | 1.39 | 108.31 | ||
Total unsaturated (UFA) | 12.74 | 688.14 | ||
Total n6 | 10.94 | 574.89 | ||
Total n9 | 1.80 | 113.26 | ||
SFA:UFA | 0.11 | 0.16 |
Indicator | Unit | Value |
---|---|---|
Global Warming Potential 100a | mPt | 1.13 |
Ozone depletion | mPt | 1.27 × 10−1 |
Ionizing radiation | mPt | 7.74 × 10−2 |
Photochemical ozone formation | mPt | 1.17 × 10−2 |
Particulate matter | mPt | 2.32 × 10−1 |
Human toxicity, non-cancer | mPt | 4.99 × 10−2 |
Human toxicity, cancer | mPt | 1.74 × 10−2 |
Acidification | mPt | 1.16 × 10−1 |
Eutrophication, freshwater | mPt | 1.09 × 10−2 |
Eutrophication, marine | mPt | 4.47 × 10−2 |
Eutrophication, terrestrial | mPt | 2.88 × 10−3 |
Ecotoxicity, freshwater | mPt | 2.30 × 10−1 |
Land use | mPt | 5.12 × 10−5 |
Water use | mPt | 1.11 × 10−1 |
Resource use, fossils | mPt | 4.05 × 10−2 |
Resource use, minerals and metals | mPt | 4.99 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faggian, M.; Lucchetti, S.; Ferrari, S.; De Nadai, G.; Francescato, S.; Baratto, G.; De Zordi, N.; Stanic, S.-M.; Peron, G.; Sut, S.; et al. An Integrated Approach to Develop Innovative, Sustainable, and Effective Cosmetic Ingredients: The Case Report of Fatty-Acids-Enriched Wild Strawberry Waste Extract. Appl. Sci. 2024, 14, 10603. https://doi.org/10.3390/app142210603
Faggian M, Lucchetti S, Ferrari S, De Nadai G, Francescato S, Baratto G, De Zordi N, Stanic S-M, Peron G, Sut S, et al. An Integrated Approach to Develop Innovative, Sustainable, and Effective Cosmetic Ingredients: The Case Report of Fatty-Acids-Enriched Wild Strawberry Waste Extract. Applied Sciences. 2024; 14(22):10603. https://doi.org/10.3390/app142210603
Chicago/Turabian StyleFaggian, Marta, Silvia Lucchetti, Sara Ferrari, Gabriele De Nadai, Stefano Francescato, Giovanni Baratto, Nicola De Zordi, Silvia-Maria Stanic, Gregorio Peron, Stefania Sut, and et al. 2024. "An Integrated Approach to Develop Innovative, Sustainable, and Effective Cosmetic Ingredients: The Case Report of Fatty-Acids-Enriched Wild Strawberry Waste Extract" Applied Sciences 14, no. 22: 10603. https://doi.org/10.3390/app142210603
APA StyleFaggian, M., Lucchetti, S., Ferrari, S., De Nadai, G., Francescato, S., Baratto, G., De Zordi, N., Stanic, S. -M., Peron, G., Sut, S., Semenzato, A., & Dall’Acqua, S. (2024). An Integrated Approach to Develop Innovative, Sustainable, and Effective Cosmetic Ingredients: The Case Report of Fatty-Acids-Enriched Wild Strawberry Waste Extract. Applied Sciences, 14(22), 10603. https://doi.org/10.3390/app142210603