A Versatile 100 Hz Laser System with Few-Cycle and TeraWatt Pulses for Applications
Abstract
:1. Introduction
2. Design Considerations
3. Front End (FE)
4. Few-Cycle Branch
5. The TW Laser
5.1. Pulse Stretcher
5.2. Amplifier Stages
5.3. Compressor, and the Characteristics of the Output Beam
5.4. Laser Control System
5.5. Operation at Various Repetition Rates
6. Applications
6.1. Development of a Liquid Sheet Target System
6.2. Femtosecond Cutting
6.3. Imaging with Laser Induced X-Ray
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Prencipe, I.; Fuchs, J.; Pascarelli, S.; Schumacher, D.W.; Stephens, R.B.; Alexander, N.B.; Briggs, R.; Büscher, M.; Cernaianu, M.O.; Choukourov, A.; et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 2017, 5, e17. [Google Scholar] [CrossRef]
- Füle, M.; Gilinger, T.; Nagyillés, B.; Karnok, M.; Gaál, P.; Figul, S.; Marowsky, G.; Kovács, G.; Bojtos, A.; Samu, K.; et al. Development of High Repetition Rate Target Systems for Ion Acceleration with Laser Radiation. In Proceedings of the 9th International Conference on Ultrahigh Intensity Lasers (ICUIL 2022), Jeju, Republic of Korea, 18–23 September 2022. [Google Scholar]
- Koechner, W. Solid-State Laser Engineering; Springer Science & Business Media, Inc.: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Backus, S.; Durfee, C.G., III; Murnane, M.M.; Kapteyn, H.C. High power ultrafast lasers. Rev. Sci. Instrum. 1998, 69, 1207–1223. [Google Scholar] [CrossRef]
- Zhavoronkov, N.; Korn, G. Regenerative amplification of femtosecond laser pulses in Ti:sapphire at multikilohertz repetition rates. Opt. Lett. 2004, 29, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-H.; Kostritsa, S.; Yu, T.J.; Sung, J.H.; Choi, I.W.; Noh, Y.-C.; Ko, D.-K.; Lee, J. 100-kHz high-power femtosecond Ti:sapphire laser based on downchirped regenerative amplification. Opt. Express 2006, 14, 970–978. [Google Scholar] [CrossRef]
- Yamakawa, K.; Barty, C.P.J. Ultrafast, Ultrahigh-Peak, and High-Average Power Ti:Sapphire Laser System and Its Applications. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 658–675. [Google Scholar] [CrossRef]
- Nakamura, K.; Mao, H.-S.; Gonsalves, A.; Vincenti, H.; Mittelberger, D.E.; Daniels, J.; Magana, A.; Toth, C.; Leemans, W. Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawatt Class Laser. IEEE J. Quantum Electron. 2017, 53, 1–21. [Google Scholar] [CrossRef]
- Burdonov, K.; Fazzini, A.; Lelasseux, V.; Albrecht, J.; Antici, P.; Ayoul, Y.; Beluze, A.; Cavanna, D.; Ceccotti, T.; Chabanis, M.; et al. Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level. Matter Radiat. Extrem. 2021, 6, 064402. [Google Scholar] [CrossRef]
- Radier, C.; Chalus, O.; Charbonneau, M.; Thambirajah, S.; Deschamps, G.; David, S.; Barbe, J.; Etter, E.; Matras, G.; Ricaud, S.; et al. 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Sci. Eng. 2022, 10, e21. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, L.; Wang, C.; Liu, Y.; Xu, Y.; Li, W.; Li, S.; Yu, L.; Wang, X.; Liu, X.; et al. The Shanghai Superintense Ultrafast Laser Facility (SULF) Project. In Progress in Ultrafast Intense Laser Science XVI; Topics in Applied Physics, vol 141; Yamanouchi, K., Midorikawa, K., Roso, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 141. [Google Scholar] [CrossRef]
- Kalashnikov, M.P.; Osvay, K.; Lachko, I.M.; Schönnagel, H.; Sandner, W. Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 194–200. [Google Scholar] [CrossRef]
- Chvykov, V.; Nagymihály, R.S.; Cao, H.; Kalashnikov, M.; Osvay, K. Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD). Opt. Express 2016, 24, 3721–3733. [Google Scholar] [CrossRef] [PubMed]
- Nagy, T.; Simon, P.; Veisz, L. High-energy few-cycle pulses: Post-compression techniques. Adv. Phys. X 2021, 6, 1845795. [Google Scholar] [CrossRef]
- Lai, M.; Shui, T.; Lai, S.T.; Swinger, C. Single-grating laser pulse stretcher and compressor. Appl. Opt. 1994, 33, 6985–6987. [Google Scholar] [CrossRef]
- Jullien, A.; Ricci, A.; Böhle, F.; Rousseau, J.P.; Grabielle, S.; Forget, N.; Jacqmin, H.; Mercier, B.; Lopez-Martens, R. Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system. Opt. Lett. 2014, 39, 3774–3777. [Google Scholar] [CrossRef]
- Nisoli, M.; DeSilvestri, S.; Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 1996, 68, 2793–2795. [Google Scholar] [CrossRef]
- Alonso, B.; Sola, Í.J.; Crespo, H. Self-calibrating d-scan: Measuring ultrashort laser pulses on-target using an arbitrary pulse compressor. Sci. Rep. 2018, 8, 3264. [Google Scholar] [CrossRef] [PubMed]
- Martinez, O. 3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3–1.6 µm region. IEEE J. Quantum Electron. 1987, 23, 59–64. [Google Scholar] [CrossRef]
- Frantz, L.M.; Nodvik, J.S. Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 1963, 34, 2346–2349. [Google Scholar] [CrossRef]
- Le Blanc, C.; Curley, P.; Salin, F. Gain-narrowing and gain-shifting of ultra-short pulses in Ti: Sapphire amplifiers. Opt. Commun. 1996, 131, 391–398. [Google Scholar] [CrossRef]
- Moulton, P.F. Spectroscopic and Laser Characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 1986, 3, 125–133. [Google Scholar] [CrossRef]
- Osvay, K.; Kovács, A.P.; Heiner, Z.; Kurdi, G.; Klebniczki, J.; Csatári, M. Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 213–220. [Google Scholar] [CrossRef]
- Toth, S.; Stanislauskas, T.; Balciunas, I.; Budriunas, R.; Adamonis, J.; Danilevicius, R.; Viskontas, K.; Lengvinas, D.; Veitas, G.; Gadonas, D.; et al. SYLOS lasers–the frontier of few-cycle, multi-TW, kHz lasers. J. Phys. Photonics 2020, 2, 045003. [Google Scholar] [CrossRef]
- Osvay, K.; Stuhl, L.; Varmazyar, P.; Gilinger, T.; Elekes, Z.; Fenyvesi, A.; Hideghethy, K.; Szabo, R.E.; Füle, M.; Biró, B.; et al. Towards a 1010 n/s neutron source with kHz repetition rate, few-cycle laser pulses. Eur. Phys. J. Plus 2024, 139, 574. [Google Scholar] [CrossRef]
- Füle, M.; Kovács, A.P.; Gilinger, T.; Karnok, M.; Gaál, P.; Figul, S.; Marowsky, G.; Osvay, K. Development of an ultrathin liquid sheet target for laser ion acceleration at high repetition rates in the kilohertz range. High Power Laser Sci. Eng. 2024, 12, e37. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Phillips, K.C.; Ganghi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of materials: A review. Adv. Opt. Photonics 2015, 7, 684. [Google Scholar] [CrossRef]
- Haney, S.J.; Berger, K.W.; Kubiak, G.D.; Rockett, P.D.; Hunter, J. Prototype high-speed tape target transport for a laser plasma soft-x-ray projection lithography source. Appl. Opt. 1993, 32, 6934–6937. [Google Scholar] [CrossRef]
- Murnane, M.M.; Kapteyn, H.C.; Rosen, M.D.; Falcone, R.W. Ultrafast X-ray Pulses from Laser-Produced Plasmas. Science 1991, 251, 531–536. [Google Scholar] [CrossRef]
- Kieffer, J.C.; Chaker, M. X-ray sources based on subpicosecond-laser-produced plasmas. J. X-Ray Sci. Technol. 1994, 4, 312–322. [Google Scholar]
- Giulietti, D.; Gizzi, L.A. X-ray emission from laser-produced plasmas. Riv. Del Nuovo C. 1998, 21, 1–93. [Google Scholar] [CrossRef]
- Rettig, C.L.; Roquemore, W.M.; Gord, J.R. Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source. Appl. Phys. B 2008, 93, 365–372. [Google Scholar] [CrossRef]
- Jones, C.P.; Brenner, C.M.; Stitt, C.A.; Armstrong, C.; Rusby, D.R.; Mirfayzi, S.R.; Wilson, L.A.; Alejo, A.; Ahmed, H.; Allott, R.; et al. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages. J. Hazard. Mater. 2016, 318, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Gruse, J.-N.; Streeter, M.J.V.; Thornton, C.; Armstrong, C.D.; Baird, C.D.; Bourgeois, N.; Cipiccia, S.; Finlay, O.J.; Gregory, C.D.; Katzir, Y.; et al. Application of compact laser-driven accelerator X-ray sources for industrial imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 983, 164369. [Google Scholar] [CrossRef]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001; ISBN 089871494X/9780898714944. [Google Scholar]
- Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P.M.; et al. GATE: A simulation toolkit for PET and SPECT. Phys. Med. Biol. 2004, 49, 4543–4561. [Google Scholar] [CrossRef]
- Snigirev, A.; Snigireva, I.; Kohn, V.; Kuznetsov, S.; Schelokov, I. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 1995, 66, 5486–5492. [Google Scholar] [CrossRef]
- Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat. Commun. 2015, 6, 7568. [Google Scholar] [CrossRef]
- Kalashnikov, M.; Cao, H.; Osvay, K.; Chvykov, V. Polarization-encoded chirped pulse amplification in Ti:sapphire: A way toward few-cycle petawatt lasers. Opt. Lett. 2016, 41, 25–28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaál, P.; Gilinger, T.; Nagyillés, B.; Nagymihály, R.; Seres, I.; Kovács, Á.; Füle, M.; Karnok, M.; Balázs, P.; Novák, T.; et al. A Versatile 100 Hz Laser System with Few-Cycle and TeraWatt Pulses for Applications. Appl. Sci. 2024, 14, 10649. https://doi.org/10.3390/app142210649
Gaál P, Gilinger T, Nagyillés B, Nagymihály R, Seres I, Kovács Á, Füle M, Karnok M, Balázs P, Novák T, et al. A Versatile 100 Hz Laser System with Few-Cycle and TeraWatt Pulses for Applications. Applied Sciences. 2024; 14(22):10649. https://doi.org/10.3390/app142210649
Chicago/Turabian StyleGaál, Péter, Tibor Gilinger, Bálint Nagyillés, Roland Nagymihály, Imre Seres, Ádám Kovács, Miklós Füle, Maté Karnok, Péter Balázs, Tibor Novák, and et al. 2024. "A Versatile 100 Hz Laser System with Few-Cycle and TeraWatt Pulses for Applications" Applied Sciences 14, no. 22: 10649. https://doi.org/10.3390/app142210649
APA StyleGaál, P., Gilinger, T., Nagyillés, B., Nagymihály, R., Seres, I., Kovács, Á., Füle, M., Karnok, M., Balázs, P., Novák, T., Kovács, A. P., & Osvay, K. (2024). A Versatile 100 Hz Laser System with Few-Cycle and TeraWatt Pulses for Applications. Applied Sciences, 14(22), 10649. https://doi.org/10.3390/app142210649