The Lightweight Fracture Segmentation Algorithm for Logging Images Based on Fully 3D Attention Mechanism and Deformable Convolution
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. SWSDS-Net Network Architecture
2.2. DSCN Principle and Design
2.3. SWS Principle and Design
3. Results and Discussion
3.1. Dataset and Experimental Setup
3.2. Evaluation Metrics
3.3. Attention Module Comparison Experiments
3.4. Model Comparison Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhao, L.; Zhao, X.; Liu, J.; Wang, S.; Ren, W. Characteristics of Paleogene stratigraphic and lithologic reservoirs and its exploration direction in Jizhong Depression. Acta Pet. Sin. 2009, 30, 492. [Google Scholar]
- Zhang, W.; Wu, T.; Li, Z.P.; Liu, S.Y.; Qiu, A.O.; Li, Y.J.; Shi, Y.B. Fracture recognition in ultrasonic logging images via unsupervised segmentation network. Earth Sci. Inform. 2021, 14, 955–964. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Conneau, A.; Schwenk, H.; Le Cun, Y.; Barrault, L.; Assoc Computat, L. Very Deep Convolutional Networks for Text Classification. In Proceedings of the 15th Conference of the European-Chapter of the Association-for-Computational-Linguistics (EACL), Valencia, Spain, 3–7 April 2017; pp. 1107–1116. [Google Scholar]
- Tan, M.X.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Sudre, C.H.; Li, W.Q.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In Proceedings of the 3rd MICCAI International Workshop on Deep Learning in Medical Image Analysis (DLMIA)/7th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS), Quebec, QC, Canada, 14 September 2017; pp. 240–248. [Google Scholar]
- Mohajerani, S.; Saeedi, P. Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery Via Filtered Jaccard Loss Function and Parametric Augmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4254–4266. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.M.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 16th IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Alzubaidi, F.; Makuluni, P.; Clark, S.R.; Lie, J.E.; Mostaghimi, P.; Armstrong, R.T. Automatic fracture detection and characterization from unwrapped drill-core images using mask R-CNN. J. Pet. Sci. Eng. 2022, 208, 109471. [Google Scholar] [CrossRef]
- Dias, L.O.; Bom, C.R.; Faria, E.L.; Valentín, M.B.; Correia, M.D.; de Albuquerque, M.P.; de Albuquerque, M.P.; Coelho, J.M. Automatic detection of fractures and breakouts patterns in acoustic borehole image logs using fast-region convolutional neural networks. J. Pet. Sci. Eng. 2020, 191, 107099. [Google Scholar] [CrossRef]
- Li, C.; Zou, C.C.; Peng, C.; Lan, X.X.; Zhang, Y.Y. Intelligent identification and segmentation of fractures in images of ultrasonic image logging based on transfer learning. Fuel 2024, 369, 131694. [Google Scholar] [CrossRef]
- Yu, H.; Pan, B.; Guo, Y.; Li, Y.; Han, R.; Wang, Y.; Zhang, P.; Wang, X. Automatic fracture identification from logging images using the TSCODE-SIMAM-YOLOv5 algorithm. Geoenergy Sci. Eng. 2024, 243, 213319. [Google Scholar] [CrossRef]
- Xiong, B.; Hong, R.; Liu, R.; Wang, J.; Zhang, J.; Li, W.; Lv, S.; Ge, D. FCT-Net: A dual-encoding-path network fusing atrous spatial pyramid pooling and transformer for pavement crack detection. Eng. Appl. Artif. Intell. 2024, 137, 109190. [Google Scholar] [CrossRef]
- Xiong, B.; Hong, R.; Wang, J.; Li, W.; Zhang, J.; Lv, S.; Ge, D. DefNet: A multi-scale dual-encoding fusion network aggregating Transformer and CNN for crack segmentation. Constr. Build. Mater. 2024, 448, 138206. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, Z.; Sharma, P.K.; Alfarraj, O.; Tolba, A.; Wang, J. A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention. Expert Syst. Appl. 2024, 256, 124950. [Google Scholar] [CrossRef]
- Liang, J.; Gu, X.; Jiang, D.; Zhang, Q. CNN-based network with multi-scale context feature and attention mechanism for automatic pavement crack segmentation. Autom. Constr. 2024, 164, 105482. [Google Scholar] [CrossRef]
- Yang, L.X.; Zhang, R.Y.; Li, L.D.; Xie, X.H. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning (ICML), Virtual, 18–24 July 2021. [Google Scholar]
- Zhang, J.; Liu, B.W.; Zhang, H.Y.; Zhang, L.; Wang, F.X.; Chen, Y.B. A small object detection network for remote sensing based on CS-PANet and DSAN. Multimed. Tools Appl. 2024, 83, 72079–72096. [Google Scholar] [CrossRef]
- Xie, S.N.; Tu, Z.W. Holistically-Nested Edge Detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1395–1403. [Google Scholar]
- Song, M.; Guo, P. A Combinatorial Optimization Method for Remote Sensing Image Fusion with Contourlet and HSI Transform. J. Comput.-Aided Des. Graph. 2012, 24, 83–88. [Google Scholar]
- Du, G.G.; Wang, K.; Lian, S.G.; Zhao, K.Y. Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: A review. Artif. Intell. Rev. 2021, 54, 1677–1734. [Google Scholar] [CrossRef]
- Wang, X.R.; Zhu, Y.J.; Liu, H.Z. Surface defect detection for intricate pattern fabrics based on deep learning. Meas. Sci. Technol. 2024, 35, 105412. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, Z.; Zhou, W.J. Fast autofocusing in off-axis digital holography based on search region segmentation and dichotomy. Opt. Laser Technol. 2025, 181, 111876. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhang, Z.Q.; Chen, N.G.; Wang, Y. Dynamic convolutional time series forecasting based on adaptive temporal bilateral filtering. Pattern Recognit. 2025, 158, 110985. [Google Scholar] [CrossRef]
- Xie, T.; Sun, Q.H.; Sun, T.; Zhang, J.H.; Dai, K.; Zhao, L.J.; Wang, K.; Li, R.F. DVDS: A deep visual dynamic slam system. Expert Syst. Appl. 2025, 260, 125438. [Google Scholar] [CrossRef]
- Chen, X.Y.; Luo, J.H.; Ren, Y.; Cui, T.; Zhang, M. MAFNet: A two-stage multiple attention fusion network for partial-to-partial point cloud registration. Meas. Sci. Technol. 2024, 35, 125113. [Google Scholar] [CrossRef]
- Li, N.H.; Liu, S.J.; Liu, Y.Q.; Zhao, S.; Liu, M. Neural Speech Synthesis with Transformer Network. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence/31st Innovative Applications of Artificial Intelligence Conference/9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 6706–6713. [Google Scholar]
- Wang, X.L.; Girshick, R.; Gupta, A.; He, K.M. Non-local Neural Networks. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 2017, 27, 1413–1432. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.J.; Li, Y.; Bao, Y.J.; Fang, Z.W.; Lu, H.Q.; Soc, I.C. Dual Attention Network for Scene Segmentation. In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 3141–3149. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhu, L.; Wang, X.J.; Ke, Z.H.; Zhang, W.; Lau, R. BiFormer: Vision Transformer with Bi-Level Routing Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 10323–10333. [Google Scholar]
- Ao, D.; Zhou, L.; Luo, M.; Wang, W. A novel method of fracture segmentation for image log interpretation based on attention mechanisms and convolutional neural networks. J. Geophys. Prospect. Pet. 2023, 62, 236–244. [Google Scholar]
- Tong, W.; Chen, W.T.; Han, W.; Li, X.J.; Wang, L.Z. Channel-Attention-Based DenseNet Network for Remote Sensing Image Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4121–4132. [Google Scholar] [CrossRef]
- Huang, Z.P.; Liu, J.W.; Li, L.; Zheng, K.C.; Zha, Z.J. The Association for the Advancement of Artificial Intelligence. Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared Person Re-identification. In Proceedings of the 36th AAAI Conference on Artificial Intelligence/34th Conference on Innovative Applications of Artificial Intelligence/12th Symposium on Educational Advances in Artificial Intelligence, Virtual, 22 February–1 March 2022; pp. 1034–1042. [Google Scholar]
Model | P | R | D | Params |
---|---|---|---|---|
Base | 68.4 | 51.0 | 58.4 | |
SWS | 70.8 | 53.4 | 60.9 | +460 K |
Coordinate | 69.9 | 51.7 | 59.4 | +560 K |
SE | 69.3 | 51.9 | 59.3 | +590 K |
CBAM | 68.2 | 51.6 | 58.7 | +590 K |
Biformer | 65.0 | 48.3 | 55.4 | +4.67 M |
Parameter | Model | S1 | S2 | S3 | S4 | S5 | S6 | S7 | Average |
---|---|---|---|---|---|---|---|---|---|
P | UNet | 0.741 | 0.660 | 0.635 | 0.763 | 0.732 | 0.685 | 0.645 | 0.694 |
3D-UNet | 0.710 | 0.535 | 0.687 | 0.734 | 0.617 | 0.617 | 0.544 | 0.636 | |
UNetPlus | 0.674 | 0.690 | 0.561 | 0.681 | 0.509 | 0.667 | 0.599 | 0.639 | |
UNet++ | 0.718 | 0.716 | 0.655 | 0.756 | 0.545 | 0.635 | 0.628 | 0.664 | |
SWSDS-Net | 0.789 | 0.775 | 0.702 | 0.811 | 0.564 | 0.692 | 0.647 | 0.712 | |
R | UNet | 0.387 | 0.667 | 0.653 | 0.391 | 0.495 | 0.577 | 0.403 | 0.510 |
3D-UNet | 0.453 | 0.613 | 0.593 | 0.512 | 0.599 | 0.675 | 0.538 | 0.570 | |
UNetPlus | 0.210 | 0.471 | 0.535 | 0.095 | 0.497 | 0.356 | 0.178 | 0.334 | |
UNet++ | 0.521 | 0.662 | 0.702 | 0.552 | 0.703 | 0.727 | 0.678 | 0.653 | |
SWSDS-Net | 0.534 | 0.642 | 0.701 | 0.512 | 0.658 | 0.714 | 0.503 | 0.608 | |
I | UNet | 0.615 | 0.705 | 0.682 | 0.644 | 0.670 | 0.693 | 0.634 | 0.663 |
3D-UNet | 0.636 | 0.650 | 0.687 | 0.681 | 0.684 | 0.703 | 0.652 | 0.670 | |
UNetPlus | 0.530 | 0.647 | 0.633 | 0.503 | 0.626 | 0.618 | 0.537 | 0.584 | |
UNet++ | 0.645 | 0.710 | 0.694 | 0.663 | 0.633 | 0.717 | 0.643 | 0.672 | |
SWSDS-Net | 0.675 | 0.696 | 0.692 | 0.661 | 0.667 | 0.707 | 0.640 | 0.676 | |
D | UNet | 0.509 | 0.664 | 0.644 | 0.517 | 0.591 | 0.626 | 0.496 | 0.578 |
3D-UNet | 0.553 | 0.571 | 0.637 | 0.603 | 0.608 | 0.645 | 0.541 | 0.594 | |
UNetPlus | 0.320 | 0.599 | 0.548 | 0.167 | 0.503 | 0.464 | 0.274 | 0.411 | |
UNet++ | 0.604 | 0.688 | 0.678 | 0.638 | 0.614 | 0.678 | 0.652 | 0.650 | |
SWSDS-Net | 0.637 | 0.702 | 0.702 | 0.628 | 0.607 | 0.703 | 0.566 | 0.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhang, L.; Xi, Z.; Qian, Y.; Li, A. The Lightweight Fracture Segmentation Algorithm for Logging Images Based on Fully 3D Attention Mechanism and Deformable Convolution. Appl. Sci. 2024, 14, 10662. https://doi.org/10.3390/app142210662
Yang Q, Zhang L, Xi Z, Qian Y, Li A. The Lightweight Fracture Segmentation Algorithm for Logging Images Based on Fully 3D Attention Mechanism and Deformable Convolution. Applied Sciences. 2024; 14(22):10662. https://doi.org/10.3390/app142210662
Chicago/Turabian StyleYang, Qishun, Liyan Zhang, Zihan Xi, Yu Qian, and Ang Li. 2024. "The Lightweight Fracture Segmentation Algorithm for Logging Images Based on Fully 3D Attention Mechanism and Deformable Convolution" Applied Sciences 14, no. 22: 10662. https://doi.org/10.3390/app142210662
APA StyleYang, Q., Zhang, L., Xi, Z., Qian, Y., & Li, A. (2024). The Lightweight Fracture Segmentation Algorithm for Logging Images Based on Fully 3D Attention Mechanism and Deformable Convolution. Applied Sciences, 14(22), 10662. https://doi.org/10.3390/app142210662