Research on the Technology of a Compact Double-Layer Multispectral Filter-Wheel Mechanism Driven by a Single Motor
Abstract
:1. Introduction
2. Theory and Methods
3. Component Design
3.1. Structural Design
3.2. Motor Selection
4. Finite Element Analysis
4.1. Modal Analysis
4.2. Dynamic Analysis of Switching Between Adjacent Combinations
4.3. Dynamic Analysis of Switching Between Adjacent Combinations
4.4. Dynamic Analysis of Switching Between Adjacent Combinations
5. Performance Test
5.1. Switching Between Adjacent Combinations
5.2. Switching Between 10 Combinations
5.3. Test Margin with Counterweight
5.4. Spectral Testing of 20 Combinations
5.5. Application Testing
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadon, A.; Mandelmilch, M.; Ben-Dor, E.; Sheffer, E. Sequential PCA-based classification of mediterranean forest plants using airborne hyperspectral remote sensing. Remote Sens. 2019, 11, 2800. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Saberioon, M.; Borůvka, L.; Houška, J.; Vašát, R.; Chapman Agyeman, P.; Coblinski, J.A.; Klement, A. Exploring the suitability of UAS-based multispectral images for estimating soil organic carbon: Comparison with proximal soil sensing and spaceborne imagery. Remote Sens. 2021, 13, 308. [Google Scholar] [CrossRef]
- Cannaday, A.B.; Davis, C.H.; Bajkowski, T.M. Detection of Camouflage-Covered Military Objects Using High-Resolution Multi-Spectral Satellite Imagery. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience, Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 5766–5769. [Google Scholar]
- Waterhouse, D.J.; Stoyanov, D. Optimized spectral filter design enables more accurate estimation of oxygen saturation in spectral imaging. Biomed. Opt. Express 2022, 13, 2156–2173. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving wheat yield prediction accuracy using LSTM-RF framework based on UAV thermal infrared and multispectral imagery. Agriculture 2022, 12, 892. [Google Scholar] [CrossRef]
- Rieke, G.H.; Wright, G.S.; Böker, T.; Bouwman, J.; Colina, L.; Glasse, A.; Gordon, K.D.; Greene, T.P.; Güdel, M.; Henning, T.; et al. The mid-infrared instrument for the James Webb Space Telescope, i: Introduction. Publ. Astron. Soc. Pac. 2015, 127, 584. [Google Scholar] [CrossRef]
- Lemke, D.; Böhm, A.; de Bonis, F.; Ebert, M.; Gross, T.; Grözinger, U.; Henning, T.; Hinz, M.; Hofferbert, R.; Huber, A.; et al. Cryogenic filter-and spectrometer wheels for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST). In Optomechanical Technologies for Astronomy, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Orlando, FL, USA, 24–31 May 2006; Volume 6273, pp. 663–670.
- Holmes, R.; Grözinger, U.; Krause, O.; Schweitzer, M. A filter wheel mechanism for the Euclid near-infrared imaging photometer. In Modern Technologies in Space-and Ground-based Telescopes; Instrumentation, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, San Diego, CA, USA, 27 June–2 July 2010; Volume 7739, pp. 444–453.
- Wang, Y.; Li, S.; Zhang, H. Dynamic experiment of a rotary filter wheel mechanism for spatial multispectral imaging. J. Vib. Shock. 2020, 39, 101–105. [Google Scholar]
- Bao, H.; Li, Z.L.; Chai, F.M.; Yang, H.S. Filter wheel mechanism for optical remote sensor in geostationary orbit. Opt. Precis. Eng. 2015, 23, 3357–3363. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Y.; Wang, Q. Design and test of filter wheel mechanism based on large thin-wall bearing. Spacecr. Environ. Eng. 2018, 35, 493–499. [Google Scholar]
- Kapoor, A.; Sharma, G.; Suresha Kumar, H.N.; Viswanatha, N.; KeshavaMurthy, K.A.; Sajeesh, K.N.; Yadav, S. A novel shape memory alloy-based filter wheel drive mechanism for astronomical payloads. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 2610–2625. [Google Scholar] [CrossRef]
- Chen, B.; Lin, J.; Xie, S.J. An Electric Dual Filter Wheel. CN211603718U, 29 September 2020. [Google Scholar]
- Wang, S.; Ji, R.; Lu, W. Applications of optical coatings on spectral selective structures. In Handbook of Modern Coating Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 269–319. [Google Scholar]
- Available online: https://www.edmundoptics.cn/ (accessed on 12 September 2024).
- Chen, D.X. Mechanical Design Handbook, 5th ed.; Chemical Industry Press: Beijing, China, 2010. [Google Scholar]
- Li, X.Y.; Li, S.S.; Li, C.C. Transient dynamics simulation of helical gear pair based on ANSYS. Adv. Mater. Res. 2011, 230, 578–581. [Google Scholar] [CrossRef]
- Wang, Z.; Pu, W.; Pei, X.; Cao, W. Nonlinear dynamical behaviors of spiral bevel gears in transient mixed lubrication. Tribol. Int. 2021, 160, 107022. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Naffakh, M.; Marco, C.; Ellis, G.; Gómez-Fatou, M.A. High-performance nanocomposites based on polyetherketones. Prog. Mater. Sci. 2012, 57, 1106–1190. [Google Scholar] [CrossRef]
Upper Gear | Lower Gear | ||
---|---|---|---|
Code | Transmission Wavelength | Code | Transmission Wavelength |
1 | ≤700 nm | A | ≥760 nm |
2 | ≤800 nm | B | ≥400 nm |
3 | ≤900 nm | C | ≥500 nm |
4 | ≤1150 nm | D | ≥560 nm |
5 | ≤1200 nm |
Work Step Number | Combination Code | Spectral Details | Work Step Number | Combination Code | Spectral Details | ||
---|---|---|---|---|---|---|---|
1 | A1 | 760 nm | 700 nm | 12 | D2 | 560 nm | 800 nm |
2 | B2 | 400 nm | 800 nm | 13 | A3 | 760 nm | 900 nm |
3 | C3 | 500 nm | 900 nm | 14 | B4 | 400 nm | 1150 nm |
4 | D4 | 560 nm | 1150 nm | 15 | C5 | 500 nm | 1200 nm |
5 | A5 | 760 nm | 1200 nm | 16 | D1 | 560 nm | 700 nm |
6 | B1 | 400 nm | 700 nm | 17 | A2 | 760 nm | 800 nm |
7 | C2 | 500 nm | 800 nm | 18 | B3 | 400 nm | 900 nm |
8 | D3 | 560 nm | 900 nm | 19 | C4 | 500 nm | 1150 nm |
9 | A4 | 760 nm | 1150 nm | 20 | D5 | 560 nm | 1200 nm |
10 | B5 | 400 nm | 1200 nm | 21 | A1 | 760 nm | 700 nm |
11 | C1 | 500 nm | 700 nm |
Reduction Ratio | Torque | Maximum Stalling Torque | Rated Speed | Maximum Speed | Maximum Acceleration | |
---|---|---|---|---|---|---|
Motor | 4:1 | 0.0025 N·m | 0.005 N·m | 166.67 r/s | 233.33 r/s | 1666.67 r/s2 |
Gearbox | 0.01 N·m | 0.02 N·m | 41.67 r/s | 58.33 r/s | 416.67 r/s2 |
Material | Density | Elastic Modulus | Poisson’s Ratio | Tensile Strength |
---|---|---|---|---|
Aluminum alloy 6061 | 2.85 kg/m3 | 69 GPa | 0.33 | 205 MPa |
PEK | 1.30 kg/m3 | 4.0 GPa | 0.38 | 105 MPa |
Silica | 2.20 kg/m3 | 72 GPa | 0.2 | 110 MPa |
Order | Vibration Mode | Frequency (Hz) | Vibration Form |
---|---|---|---|
1 | 470.81 | PCB board rotates around the X-axis | |
2 | 479 | Reinforcing vibrates along the Y-axis | |
3 | 479.23 | Reinforcing vibrates along the X-axis |
Combination Number | Spectral Details | Detection Signal-to-Noise Ratio |
---|---|---|
A1 | 760 nm~700 nm | No target |
B2 | 400 nm~800 nm | Background saturation |
C3 | 500 nm~900 nm | 2.5 |
D4 | 560 nm~1150 nm | 12.8 |
A5 | 760 nm~1200 nm | 15.9 |
B1 | 400 nm~700 nm | Background saturation |
C2 | 500 nm~800 nm | No target |
D3 | 560 nm~900 nm | 12.0 |
A4 | 760 nm~1150 nm | 22.9 |
B5 | 400 nm~1200 nm | Background saturation |
C1 | 500 nm~700 nm | No target |
D2 | 560 nm~800 nm | No target |
A3 | 760 nm~900 nm | 19.7 |
B4 | 400 nm~1150 nm | Background saturation |
C5 | 500 nm~1200 nm | 3.7 |
D1 | 560 nm~700 nm | No target |
A2 | 760 nm~800 nm | No target |
B3 | 400 nm~900 nm | Background saturation |
C4 | 500 nm~1150 nm | 2.6 |
D5 | 560 nm~1200 nm | 11.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Wu, H.; Tan, S.; Zhang, X.; Wang, L.; Zhou, N.; Jia, J.; Mu, S.; Wang, W. Research on the Technology of a Compact Double-Layer Multispectral Filter-Wheel Mechanism Driven by a Single Motor. Appl. Sci. 2024, 14, 10686. https://doi.org/10.3390/app142210686
Ma L, Wu H, Tan S, Zhang X, Wang L, Zhou N, Jia J, Mu S, Wang W. Research on the Technology of a Compact Double-Layer Multispectral Filter-Wheel Mechanism Driven by a Single Motor. Applied Sciences. 2024; 14(22):10686. https://doi.org/10.3390/app142210686
Chicago/Turabian StyleMa, Lin, Hongbo Wu, Shuanglong Tan, Xin Zhang, Liang Wang, Nan Zhou, Jinlong Jia, Shuaiwei Mu, and Wenjie Wang. 2024. "Research on the Technology of a Compact Double-Layer Multispectral Filter-Wheel Mechanism Driven by a Single Motor" Applied Sciences 14, no. 22: 10686. https://doi.org/10.3390/app142210686
APA StyleMa, L., Wu, H., Tan, S., Zhang, X., Wang, L., Zhou, N., Jia, J., Mu, S., & Wang, W. (2024). Research on the Technology of a Compact Double-Layer Multispectral Filter-Wheel Mechanism Driven by a Single Motor. Applied Sciences, 14(22), 10686. https://doi.org/10.3390/app142210686