Development of a Process for Polyphenol Extraction and the Production of a Functional Powder for Food Fortification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pilot Plant (Figure 1)
2.3. Extraction Section
2.4. Batch Distillation
- The centrifuged product was loaded into the reboiler through a membrane pump and two cartridge filters that removed any residual solids;
- The compressed air that fed the ejector opened, after having closed all the valves;
- Via the panel, the pressure setpoint was adjusted, and the authors waited for the pressure to stabilise at the setpoint value;
- The heating of the reboiler started by opening the manual adjustment valve of the flow rate of hot water entering the jacket;
- The reflux valve opened completely;
- Once the reboiler and column head temperatures stabilised, the reflux valve was partially closed, setting the desired reflux flow rate; the progress of the distillation was monitored through the visual levels of the reboiler and the distillate accumulation tank and the temperature values recorded for the reboiler and for the column head;
- The distillation was interrupted as soon as a temperature in the reboiler equal to that of boiling water at the operating pressure was reached, or when all the ethanol present in the solution had been removed. The reflux valve and the hot water valve then closed;
- The air heater turned on and cooling started;
- Once a temperature of 30 °C was reached in the reboiler, the compressed air valve of the ejector was closed, and the vacuum was broken by opening a manual valve on the roof of the reboiler;
- The concentrate was discharged;
- The distillate was discharged and recycled to the extraction phase.
2.5. Drying Techniques
2.6. Raw Material
2.7. Chemical Characterisation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Polyphenol Content of the Raw Materials
3.2. Laboratory Tests
3.3. Pilot Plant Tests
3.4. Spray Dry Drying Tests
3.5. Main Implications and Future Perspectives
3.5.1. Main Implications
3.5.2. Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mealy, P.; Teytelboym, A. Economic Complexity and the Green Economy. Res. Policy 2022, 51, 103948. [Google Scholar] [CrossRef]
- Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N. Circular Economy, Degrowth and Green Growth as Pathways for Research on Sustainable Development Goals: A Global Analysis and Future Agenda. Ecol. Econ. 2021, 185, 107050. [Google Scholar] [CrossRef]
- EC. Commission Proposes Way Forward for a Fair Transition Towards Climate Neutrality; European Commission: Brussels, Belgium, 2021; pp. 2–4. Available online: https://ec.europa.eu/commission/presscorner/api/files/document/print/en/ip_21_6795/IP_21_6795_EN.pdf (accessed on 14 November 2024).
- Konfo, T.R.C.; Djouhou, F.M.C.; Hounhouigan, M.H.; Dahouenon-Ahoussi, E.; Avlessi, F.; Sohounhloue, C.K.D. Recent Advances in the Use of Digital Technologies in Agri-Food Processing: A Short Review. Appl. Food Res. 2023, 3, 100329. [Google Scholar] [CrossRef]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef]
- Antognelli, A.; Rondoni, L.; Santucci, F.M. Environmental Competences for Sustainable Grape and Wine Production in Italy. Int. J. Educ. Bus. Econ. Res. (IJEBER) 2023, 3, 1–14. [Google Scholar]
- OIV. State of the World Vine and Wine Sector 2022; International Organization of Vine and Wine Intergovernmental Organization: Dijon, France, 2023; pp. 1–19. [Google Scholar]
- Chatzimitakos, T.; Athanasiadis, V.; Mantiniotou, M.; Kalompatsios, D.; Bozinou, E.; Giovanoudis, I.; Lalas, S.I. Exploring the Feasibility of Cloud-Point Extraction for Bioactive Compound Recovery from Food Byproducts: A Review. Biomass 2023, 3, 306–322. [Google Scholar] [CrossRef]
- Bañón, S.; Díaz, P.; Rodríguez, M.; Garrido, M.D.; Price, A. Ascorbate, Green Tea and Grape Seed Extracts Increase the Shelf Life of Low Sulphite Beef Patties. Meat Sci. 2007, 77, 626–633. [Google Scholar] [CrossRef]
- Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and Characterization of Indicator Films from Carboxymethyl-Cellulose/Starch and Purple Sweet Potato (Ipomoea Batatas (L.) Lam) Anthocyanins for Monitoring Fish Freshness. Int. J. Biol. Macromol. 2020, 143, 359–372. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Rodrigues, A.M.; Matias, J.C.O.; Ferraz, A.I.; Rodrigues, A.C. Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry. Agriculture 2021, 11, 489. [Google Scholar] [CrossRef]
- Montalvo, S.; Martinez, J.; Castillo, A.; Huiliñir, C.; Borja, R.; García, V.; Salazar, R. Sustainable Energy for a Winery through Biogas Production and Its Utilization: A Chilean Case Study. Sustain. Energy Technol. Assess. 2020, 37, 100640. [Google Scholar] [CrossRef]
- Nitsos, C.; Matsakas, L.; Triantafyllidis, K.; Rova, U.; Christakopoulos, P. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation. BioMed Res. Int. 2015, 2015, 171635. [Google Scholar] [CrossRef] [PubMed]
- Giorio, C.; Pizzini, S.; Marchiori, E.; Piazza, R.; Grigolato, S.; Zanetti, M.; Cavalli, R.; Simoncin, M.; Soldà, L.; Badocco, D.; et al. Sustainability of Using Vineyard Pruning Residues as an Energy Source: Combustion Performances and Environmental Impact. Fuel 2019, 243, 371–380. [Google Scholar] [CrossRef]
- Laca, A.; Gancedo, S.; Laca, A.; Díaz, M. Assessment of the Environmental Impacts Associated with Vineyards and Winemaking. A Case Study in Mountain Areas. Environ. Sci. Pollut. Res. Int. 2021, 28, 1204–1223. [Google Scholar] [CrossRef] [PubMed]
- Soceanu, A.; Dobrinas, S.; Sirbu, A.; Manea, N.; Popescu, V. Economic Aspects of Waste Recovery in the Wine Industry. A Multidisciplinary Approach. Sci. Total Environ. 2021, 759, 143543. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, V.-C.; Ionete, R.-E. An Overview on Management and Valorisation of Winery Wastes. Appl. Sci. 2023, 13, 5063. [Google Scholar] [CrossRef]
- Genisheva, Z.; Soares, M.; Oliveira, J.M.; Carvalho, J. Wine Production Wastes, Valorization, and Perspectives. In Advances and Challenges in Hazardous Waste Management; Saleh, H.M., Hassan, A.I., Aglan, R.F., Eds.; IntechOpen: London, UK, 2023; ISBN 978-0-85466-029-2. [Google Scholar] [CrossRef]
- Jesus, M.; Romaní, A.; Mata, F.; Domingues, L. Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites Following the Concept of Biorefinery: A Review. Polymers 2022, 14, 1640. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Gabaston, J.; Ortiz-Somovilla, V.; Cantos-Villar, E. Wood Waste from Fruit Trees: Biomolecules and Their Applications in Agri-Food Industry. Biomolecules 2022, 12, 238. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of Winery Waste vs. the Costs of Not Recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Halaris, A.E.; Belendiuk, K.T.; Freedman, D.X. Antidepressant Drugs Affect Dopamine Uptake. Biochem. Pharmacol. 1975, 24, 1896–1897. [Google Scholar] [CrossRef]
- Pasrija, D.; Anandharamakrishnan, C. Techniques for Extraction of Green Tea Polyphenols: A Review. Food Bioprocess Technol. 2015, 8, 935–950. [Google Scholar] [CrossRef]
- El-Messery, T.M.; El-Said, M.M.; Demircan, E.; Ozçelik, B. Microencapsulation of Natural Polyphenolic Compounds Extracted from Apple Peel and Its Application in Yoghurt. Acta Sci. Pol. Technol. Aliment. 2019, 18, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Taglieri, I.; Rimbotti Antinori, V.; Palla, F.; Macaluso, M.; Ferroni, G.; Sanmartin, C.; Venturi, F.; Zinnai, A. A Statistical Approach to Describe the Ripening Evolution of Sangiovese Grapes Coming from Different Chianti Classico Sub-Areas. Foods 2021, 10, 2292. [Google Scholar] [CrossRef] [PubMed]
- Mercanti, N.; Macaluso, M.; Pieracci, Y.; Flamini, G.; Scappaticci, G.; Marianelli, A.; Zinnai, A. Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation. Foods 2024, 13, 1108. [Google Scholar] [CrossRef]
- Tan, S.; Tang, J.; Shi, W.; Wang, Z.; Xiang, Y.; Deng, T.; Gao, X.; Li, W.; Shi, S. Effects of Three Drying Methods on Polyphenol Composition and Antioxidant Activities of Litchi Chinensis Sonn. Food Sci. Biotechnol. 2020, 29, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Kumla, J.; Suwannarach, N.; Tanruean, K.; Lumyong, S. Comparative Evaluation of Chemical Composition, Phenolic Compounds, and Antioxidant and Antimicrobial Activities of Tropical Black Bolete Mushroom Using Different Preservation Methods. Foods 2021, 10, 781. [Google Scholar] [CrossRef]
- Cuong, D.M.; Kim, H.Y.; Keshawa Ediriweera, M.; Cho, S.K. Evaluation of Phytochemical Content and the Antioxidant and Antiproliferative Potentials of Leaf Layers of Cabbage Subjected to Hot Air and Freeze-Drying. J. Food Qual. 2022, 2022, 8040456. [Google Scholar] [CrossRef]
- Kim, J.-S. Optimization of Accelerated Solvent Extraction of Ginsenosides from Cultivated Wild Ginseng Using Response Surface Methodology. Prev. Nutr. Food Sci. 2022, 27, 315–322. [Google Scholar] [CrossRef]
- Fidelis, M.; Tienaho, J.; Brännström, H.; Korpinen, R.; Pihlava, J.-M.; Hellström, J.; Jylhä, P.; Liimatainen, J.; Möttönen, V.; Maunuksela, J.; et al. Chemical Composition and Bioactivity of Hemp, Reed Canary Grass and Common Reed Grown on Boreal Marginal Lands. RSC Sustain. 2023, 1, 2202–2223. [Google Scholar] [CrossRef]
- Jovanovic, A.; Petrovic, P.; Ðordjevic, V.; Zdunic, G.; Savikin, K.; Bugarski, B. Polyphenols Extraction from Plant Sources. Lek. Sirovine 2017, 37, 45–49. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, E.; Yi, C.; Zhao, M.; Jiang, Y. Effects of High Pressure Extraction on the Extraction Yield, Total Phenolic Content and Antioxidant Activity of Longan Fruit Pericarp. Innov. Food Sci. Emerg. Technol. 2009, 10, 155–159. [Google Scholar] [CrossRef]
- Güçlü-Üstündaǧ, Ö.; Temelli, F. Correlating the Solubility Behavior of Fatty Acids, Mono-, Di-, and Triglycerides, and Fatty Acid Esters in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2000, 39, 4756–4766. [Google Scholar] [CrossRef]
- Rajha, H.N.; Darra, N.E.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food Nutr. Sci. 2014, 5, 397–409. [Google Scholar] [CrossRef]
Trial | T (°C) | Air (Hz) | Pump (rpm) | Piston (Hz) |
---|---|---|---|---|
1 | 90 | 25 | 10 | 10 |
2 | 160 | 40 | 18 | 10 |
3 | 200 | 30 | 18 | 10 |
Sample | gGAE/KgSS |
---|---|
Fresh | 45 |
Frozen (1a) | 44 |
Dry (1b) | 41 |
Frozen (2a) | 42 |
Dry (2b) | 40 |
Parameters | 20 °C | 40 °C | 55 °C | 87 °C |
---|---|---|---|---|
pH | 4.00 ± 0.01 a | 4.00 ± 0.04 a | 4.00 ± 0.01 a | 4.00 ± 0.04 a |
Dry residue % | 1.8 ± 0.1 c | 1.7 ± 0.1 c | 3.7 ± 0.1 b | 9.1 ± 0.1 a |
Total phenols (mg/L of A. gallic) | 79 ± 2 d | 101 ± 4 c | 201 ± 1 b | 833 ± 15 a |
No flavonoid phenols (mg/L of A. gallic) | 7.6 ± 0.8 d | 17 ± 1.0 c | 60 ± 9.0 b | 85 ± 1.0 a |
Flavonoid phenols (mg/L di A. gallic) | 72 ± 1 d | 84 ± 3 c | 140 ± 8 b | 748 ± 14 a |
Anthocyanins (mg/L of Malvin) | 3.6 ± 0.5 d | 7.0 ± 0.1 c | 54.0 ± 0.1 b | 174 ± 8.0 a |
Antioxidant activity (μmol TEAC/mL) | 0.23 ± 0.04 d | 0.53 ± 0.06 c | 1.52 ± 0.05 b | 2.11 ± 0.08 a |
Operatives Variables | 1 | 2 | 3 |
---|---|---|---|
Temperature | 55 °C | 78 °C | 87 °C |
Pressure | 0.54 bar | 1 bar | 1.2 bar |
Time of extraction | 3 h | 3 h | 3 h |
Parameters | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
Extract | Concentrated | Extract | Concentrated | Extract | Concentrated | |
Dry residue % | 1.92 | 1.85 | 0.89 | 1.73 | 2.30 | 3.20 |
Total phenols (mg/L of A. gallic) | 1167 ± 2 | 2005 ± 1 | 2669 ± 2 | 4061 ± 1 | 3387 ± 2 | 5124 ± 1 |
Antioxidant activity (μmol TEAC/mL) | 0.36 ± 0.04 | 0.43 ± 0.06 | 0.79 ± 0.03 | 1.23 ± 0.04 | 1.20 ± 0.08 | 1.74 ± 0.04 |
Parameters | Water | Hydroalcoholic Solution |
---|---|---|
Total phenols (mg/L of A. gallic) | 181 | 280 |
Antioxidant activity (μmol TEAC/mL of extract) | 1 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macaluso, M.; Mercanti, N.; Pieracci, Y.; Marianelli, A.; Scappaticci, G.; Fratacci, A.; Nicolella, C.; Zinnai, A. Development of a Process for Polyphenol Extraction and the Production of a Functional Powder for Food Fortification. Appl. Sci. 2024, 14, 10712. https://doi.org/10.3390/app142210712
Macaluso M, Mercanti N, Pieracci Y, Marianelli A, Scappaticci G, Fratacci A, Nicolella C, Zinnai A. Development of a Process for Polyphenol Extraction and the Production of a Functional Powder for Food Fortification. Applied Sciences. 2024; 14(22):10712. https://doi.org/10.3390/app142210712
Chicago/Turabian StyleMacaluso, Monica, Nicola Mercanti, Ylenia Pieracci, Andrea Marianelli, Giulio Scappaticci, Andrea Fratacci, Cristiano Nicolella, and Angela Zinnai. 2024. "Development of a Process for Polyphenol Extraction and the Production of a Functional Powder for Food Fortification" Applied Sciences 14, no. 22: 10712. https://doi.org/10.3390/app142210712
APA StyleMacaluso, M., Mercanti, N., Pieracci, Y., Marianelli, A., Scappaticci, G., Fratacci, A., Nicolella, C., & Zinnai, A. (2024). Development of a Process for Polyphenol Extraction and the Production of a Functional Powder for Food Fortification. Applied Sciences, 14(22), 10712. https://doi.org/10.3390/app142210712