Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology
Abstract
:1. Introduction
2. Principle
2.1. Light Path Construction
2.2. Simulation Verification
3. Discussion and Results
3.1. Simulation
3.2. Laser Wavelength Tuning Experiment
3.3. Impact Loading Experiment of Three-Stage Light Gas Gun
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weng, J.; Tan, H.; Wang, X.; Ma, Y.; Hu, S.; Wang, X. Optical-fiber interferometer for velocity measurements with picosecond resolution. Appl. Phys. Lett. 2006, 89, 111101. [Google Scholar] [CrossRef]
- Weng, J.; Wang, X.; Ma, Y.; Tan, H.; Cai, L.; Li, J.; Liu, C. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser. Rev. Sci. Instrum. 2008, 79, 113101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Yu, Y.Y.; Li, Y.H.; Zhang, L.; Weng, J.D. Window Corrections of Z-cut Quartz at 1550 Nm Under Elastic, Uniaxial Compression up to 10 GPa. J. Appl. Phys. 2011, 109, 103518. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.W.; Tan, Y.; He, R.Z.; Huang, J.; Ma, Y.C.; Li, J.; Weng, J.D.; Jin, K. Single femtosecond laser beam pumped transient diffraction and transient lens effects for ultrafast measurement in background-free geometry. Opt. Laser. Technol. 2017, 92, 189–192. [Google Scholar] [CrossRef]
- Khaustov, S.V.; Pai, V.V.; Lukyanov, Y.L.; Lysak, V.I.; Kuz’min, S.V. Thermal effect of explosive detonation products on a flyer plate in the explosive welding of metals. Int. J. Heat. Mass. Tran. 2020, 163, 120469. [Google Scholar] [CrossRef]
- Dolan, D.H. Extreme measurements with Photonic Doppler Velocimetry (PDV). Rev. Sci. Instrum. 2020, 91, 051501. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, S.; Grace, D.; Bless, S.; Iskander, M.; Omidvar, M. Frequency-shifted photonic Doppler velocimetry (PDV) for measuring deceleration of projectiles in soils. Acta. Geotech. 2024, 19, 2467–2485. [Google Scholar] [CrossRef]
- Dolan, D.H. Technology and times scales in Photonic Doppler Velocimetry (PDV). Meas. Sci. Technol. 2024, 35, 061001. [Google Scholar] [CrossRef]
- Jensen, B.J.; Holtkamp, D.B.; Rigg, P.A.; Dolan, D.H. Accuracy limits and window corrections for photon Doppler velocimetry. J. Appl. Phys. 2007, 101, 013523. [Google Scholar] [CrossRef]
- Gallegos, C.H.; Marshall, B.; Teel, M.; Romero, V.T.; Diaz, A.; Berninger, M. Comparison of Triature Doppler Velocimetry and Visar. J. Phys. Conf. Ser. 2010, 244, 032045. [Google Scholar] [CrossRef]
- Dolan, D.H.; Lemke, R.W.; McBride, R.D.; Martin, M.R.; Harding, E.; Dalton, D.G.; Blue, B.E.; Walker, S.S. Tracking an imploding cylinder with photonic Doppler velocimetry. Rev. Sci. Instrum. 2013, 84, 055102. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, A.; Hammer, J.; Okoth, C.; Ortiz-Ricardo, E.; Cruz-Ramirez, H.; Garay-Palmett, K.; U’Ren, A.B.; Frosz, M.H.; Jiang, X. Progress toward third-order parametric down-conversion in optical fibers. Phys. Rev. A. 2020, 101, 033840. [Google Scholar] [CrossRef]
- Dolan, D.H.; Ao, T.; Hernandez, O. Note: Frequency-conversion photonic Doppler velocimetry with an inverted circulator. Rev. Sci. Instrum. 2012, 83, 026109. [Google Scholar] [CrossRef] [PubMed]
- Mance, J.G.; La Lone, B.M.; Dolan, D.H.; Payne, S.L.; Ramsey, D.L.; Veeser, L.R. Time-stretched photonic Doppler velocimetry. Opt. Express. 2019, 27, 25022–25030. [Google Scholar] [CrossRef] [PubMed]
- Kilic, V.; DiMarco, C.S.; Foster, M.A. Time Lens Photon Doppler Velocimetry (TL-PDV) for extreme measurements. Nat. Commun. 2024, 2024, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, W.P. Precision and Accuracy in PDV and VISAR; Lawrence Livermore National Laboratory: San Francisco, CA, USA, 2017; LLNL-TR-737609. [Google Scholar]
- Bogdanoff, W.D. Design of a Two-Stage Light Gas Gun for Muzzle Velocities of 10–11 km/s. In Proceedings of the 67th Meeting of the Aeroballistic Range Association, Toledo, Spain, 3–6 October 2016. [Google Scholar]
- Thornhilla, T.F.; Chhabildasb, L.C.; Reinhartb, W.D. Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques. Int. J. Impact Eng. 2006, 33, 799–811. [Google Scholar] [CrossRef]
- Fan, Z.N.; Akram, M.S.; Liu, F.S.; Liu, Q.J. Shock temperature of liquid nitrogen under pressure using a combination of multi-channel pyrometer and Doppler pin system. Phys. Lett. A 2024, 519, 129700. [Google Scholar]
Name | Wavelength/nm | Line Width/kHz | Power/mW | Relative Intensity Noise/dB/Hz |
---|---|---|---|---|
Main Laser | 1550.192 | 100 | 500 | −130 |
Reference Laser 1 | 1550.128 | 100 | 50 | −130 |
Reference Laser 2 | 1550.000 | 100 | 50 | −130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Chen, L.; Gu, W.; Liu, C.; Tang, L.; Jia, X.; Tao, T.; Liu, S.; Chen, Y.; Wang, X.; et al. Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology. Appl. Sci. 2024, 14, 10771. https://doi.org/10.3390/app142310771
Ma H, Chen L, Gu W, Liu C, Tang L, Jia X, Tao T, Liu S, Chen Y, Wang X, et al. Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology. Applied Sciences. 2024; 14(23):10771. https://doi.org/10.3390/app142310771
Chicago/Turabian StyleMa, Heli, Long Chen, Wei Gu, Cangli Liu, Longhuang Tang, Xing Jia, Tianjiong Tao, Shenggang Liu, Yongchao Chen, Xiang Wang, and et al. 2024. "Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology" Applied Sciences 14, no. 23: 10771. https://doi.org/10.3390/app142310771
APA StyleMa, H., Chen, L., Gu, W., Liu, C., Tang, L., Jia, X., Tao, T., Liu, S., Chen, Y., Wang, X., Wu, J., Li, C., Liu, D., Weng, J., & Liu, H. (2024). Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology. Applied Sciences, 14(23), 10771. https://doi.org/10.3390/app142310771