Robust Segmentation of Partial and Imperfect Dental Arches
Abstract
:1. Introduction
- (1)
- Partial arch with less than eight teeth without preparation. This scenario is challenging from a registration point of view because the scan is short and does not always form a curved arch.
- (2)
- Partial arch with a preparation. The preparation needs to be segmented accurately because it is required for the dental crown design.
- (3)
- Partial arch with only missing tooth with or without space. The most difficult situation is an arch with a missing tooth without space.
- (4)
- Partial arch with a preparation and a missing tooth. This is the most challenging situation because it combines Scenarios 2 and 3.
- A dental arch segmentation framework is designed and implemented to integrate customized trained models which demonstrate robust, scalable, and efficient performance on new data. The model is deployed at https://app.intellidentai.com. Different published deep learning models could be integrated in the segmentation framework based on the selection of the user.
- A new registration method is applied to bring perfect and imperfect arches in a unified and consistent coordinate system. Most of partial arches do not have an arch shape but rather a rectangular one. This misguides the registration during the lingual/buccal identification. Inspired by this observation, we add a set of three-class models for gingiva cleaning to enhance the registration. Because our dataset contains preparations, we train three-class models to separate preparations from teeth and gingiva. The three-class prediction was also applied in the post-processing in order to remove extra teeth labeling.
- Novel data augmentation methods are implemented to improve trained model performance for limited datasets. A jaw slicing method is developed to augment the training data with more partial arches. A missing teeth augmentation method is also implemented to improve balance in the training dataset.
2. Related Work
3. Methods
3.1. Data Acquisition and Labeling
3.2. Arch Cleaning and Simplification
3.3. Registration Based on Oriented Bounding Box (OBB)
- (1)
- Bring the center of mass of each input mesh to origin;
- (2)
- Compute the oriented bounding box (OBB) of the centered mesh with the class vtkOBBTree of the VTK library [37]. More specifically, OBB is constructed by finding the mean and covariance matrices of the cells (and their points) that define the mesh. The eigenvectors of the covariance matrix are extracted, offering a set of orthogonal vectors that define the tightest-fitting OBB;
- (3)
- Align the obtained OBB in the x–y plan of GCS in a way that the largest edge follows the x-axis (the width of an arch), the second largest edge is in the y-axis (the height of an arch), and the smallest edge is in z-axis, the height of teeth on the arch;
- (4)
- Compute the required translation and rotation in the x-y plan using the estimated center of input arch, the centroids of teeth computed in Figure 2, and the start and end teeth labels specified by the user. The centroids between the start and end labels influence the translation and the two centroids of start and end labels influence the rotation. Then, position the arch in the GCS using the constructed transformation matrix.
3.4. Data Augmentation Methods
3.4.1. Missing Teeth Augmentation
- (1)
- extract candidate teeth from the arch and fill holes with gingiva;
- (2)
- map labels of original arch to the processed arch;
- (3)
- manually repair the labeling, if needed, with Meshlabler.
3.4.2. Jaw Slicing Augmentation
3.5. Model Training
3.6. Data Pre-Processing
- (a)
- Clean and decimate the input arch to 10k triangles approximately;
- (b)
- Register decimated original arches and synthetic arches with missing teeth;
- (c)
- Slice each registered arch with different window sizes, select 3 randomly, and upsample to 10k triangles;
- (d)
- Apply reflection augmentation around the x-axis;
- (e)
- Apply translation, rotation, and scaling augmentations within small ranges;
- (f)
- Split the dataset into 5 folds for cross-validation.
3.7. Loss Function and Evaluation Metrics
3.8. Training Details
3.9. Test Set
4. Results and Discussion
4.1. Statistics and Types of Imperfections in Our Dataset
4.2. Results with Default Settings
4.3. Comparison with MeshSegNet
4.4. Dice Similarity Coefficient (DSC) for Imperfect Arches
4.5. Ablation Study
4.5.1. Impact of Registration
4.5.2. Impact of Other Factors
4.6. Potential Applications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsheghri, A.; Ghadiri, F.; Zhang, Y.; Lessard, O.; Keren, J.; Cheriet, F.; Guibault, F. Semi-supervised segmentation of tooth from 3D scanned dental arches. In Proceedings of the Medical Imaging 2022: Image Processing, San Diego, CA, USA, 20–24 February 2022; SPIE: Bellingham, WA, USA, 2022; Volume 12032, pp. 766–771. [Google Scholar]
- Piché, N.; Lasry, N.; Alsheghri, A.; Cheriet, F.; Ghadiri, F.; Guibault, F.; Hosseinimanesh, G.; Keren, J.; Lessard, O.; Zhang, Y.; et al. Automatic Generation of Dental Restorations Using Machine Learning. U.S. Patent 18/017,809, 7 September 2023. [Google Scholar]
- Im, J.; Kim, J.Y.; Yu, H.S.; Lee, K.J.; Choi, S.H.; Kim, J.H.; Ahn, H.K.; Cha, J.Y. Accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning. Sci. Rep. 2022, 12, 9429. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.J.; Lee, S.H.; Yun, H.S.; Seo, J.K. Artificial Intelligence for Digital Dentistry. In Deep Learning and Medical Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 177–213. [Google Scholar]
- Tarce, M.; Zhou, Y.; Antonelli, A.; Becker, K. The Application of Artificial Intelligence for Tooth Segmentation in CBCT Images: A Systematic Review. Appl. Sci. 2024, 14, 6298. [Google Scholar] [CrossRef]
- Lian, C.; Wang, L.; Wu, T.H.; Liu, M.; Durán, F.; Ko, C.C.; Shen, D. Meshsnet: Deep multi-scale mesh feature learning for end-to-end tooth labeling on 3d dental surfaces. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Proceedings, Part VI 22, Shenzhen, China, 13–17 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 837–845. [Google Scholar]
- Lian, C.; Wang, L.; Wu, T.H.; Wang, F.; Yap, P.T.; Ko, C.C.; Shen, D. Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Trans. Med. Imaging 2020, 39, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Ye, C.; Chen, P.; Liu, Y.; Han, X.; Cui, S. DArch: Dental Arch Prior-assisted 3D Tooth Instance Segmentation. arXiv 2022, arXiv:2204.11911. [Google Scholar]
- Kim, T.; Cho, Y.; Kim, D.; Chang, M.; Kim, Y.J. Tooth segmentation of 3D scan data using generative adversarial networks. Appl. Sci. 2020, 10, 490. [Google Scholar] [CrossRef]
- Zahel, A.; Roehler, A.; Kaucher-Fernandez, P.; Spintzyk, S.; Rupp, F.; Engel, E. Conventionally and digitally fabricated removable complete dentures: Manufacturing accuracy, fracture resistance and repairability. Dent. Mater. 2024, 40, 1635–1642. [Google Scholar] [CrossRef]
- Caron, E.; Marino, F.A.T.; Alageel, O.S.; Alsheghri, A.; Song, J. Computer-Aided Design and Manufacturing of Removable Partial Denture Frameworks with Enhanced Biomechanical Properties. U.S. Patent 10,959,818, 30 March 2021. [Google Scholar]
- Richert, R.; Alsheghri, A.A.; Alageel, O.; Caron, E.; Song, J.; Ducret, M.; Tamimi, F. Analytical model of I-bar clasps for removable partial dentures. Dent. Mater. 2021, 37, 1066–1072. [Google Scholar] [CrossRef]
- Persson, A.S.; Andersson, M.; Odén, A.; Sandborgh-Englund, G. Computer aided analysis of digitized dental stone replicas by dental CAD/CAM technology. Dent. Mater. 2008, 24, 1123–1130. [Google Scholar] [CrossRef]
- Grochala, D.; Paleczek, A.; Lemejda, J.; Kajor, M.; Iwaniec, M. Evaluation of Geometric Occlusal Conditions Based on the Image Analysis of Dental Plaster Models. In Proceedings of the MATEC Web of Conferences, Tlen, Poland, 8–11 September 2020; EDP Sciences: Les Ulis, France, 2022; Volume 357, p. 05006. [Google Scholar]
- Naqushbandi, F.S.; John, A. Sequence of actions recognition using continual learning. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 858–863. [Google Scholar]
- Arjumand, B. The Application of artificial intelligence in restorative Dentistry: A narrative review of current research. Saudi Dent. J. 2024, 36, 835–840. [Google Scholar] [CrossRef]
- Almalki, A.; Latecki, L.J. Self-Supervised Learning With Masked Autoencoders for Teeth Segmentation From Intra-Oral 3D Scans. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 7820–7830. [Google Scholar]
- Lin, Z.; He, Z.; Wang, X.; Zhang, B.; Liu, C.; Su, W.; Tan, J.; Xie, S. DBGANet: Dual-branch geometric attention network for accurate 3D tooth segmentation. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 4285–4298. [Google Scholar] [CrossRef]
- Polizzi, A.; Quinzi, V.; Ronsivalle, V.; Venezia, P.; Santonocito, S.; Lo Giudice, A.; Leonardi, R.; Isola, G. Tooth automatic segmentation from CBCT images: A systematic review. Clin. Oral Investig. 2023, 27, 3363–3378. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, N.; Xu, T.; Xu, C. Deep learning-based tooth segmentation methods in medical imaging: A review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2024, 238, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Izzetti, R.; Nisi, M.; Gennai, S.; Graziani, F. Evaluating the relationship between mandibular third molar and mandibular canal with semiautomatic segmentation: A pilot study on CBCT datasets. Appl. Sci. 2022, 12, 502. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Moon, S.; Lee, K. Deep learning based detection of missing tooth regions for dental implant planning in panoramic radiographic images. Appl. Sci. 2022, 12, 1595. [Google Scholar] [CrossRef]
- Jang, T.J.; Yun, H.S.; Hyun, C.M.; Kim, J.E.; Lee, S.H.; Seo, J.K. Fully automatic integration of dental CBCT images and full-arch intraoral impressions with stitching error correction via individual tooth segmentation and identification. Med. Image Anal. 2024, 93, 103096. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Wei, G.; Cui, Z.; Zhou, Y. Robust hybrid learning for automatic teeth segmentation and labeling on 3D dental models. IEEE Trans. Multimed. 2023. [Google Scholar] [CrossRef]
- Jana, A.; Subhash, H.M.; Metaxas, D. Automatic tooth segmentation from 3d dental model using deep learning: A quantitative analysis of what can be learnt from a single 3d dental model. In Proceedings of the 18th International Symposium on Medical Information Processing and Analysis, Valparaiso, Chile, 9–11 November 2022; SPIE: Bellingham, WA, USA, 2023; Volume 12567, pp. 42–51. [Google Scholar]
- Al-Ubaydi, A.S.; Al-Groosh, D. The validity and reliability of automatic tooth segmentation generated using artificial intelligence. Sci. World J. 2023, 2023, 5933003. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Xu, X.; Liu, C.; Zheng, Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans. Vis. Comput. Graph. 2018, 25, 2336–2348. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, B.; Shen, Y.; Shen, K. Teethgnn: Semantic 3d teeth segmentation with graph neural networks. IEEE Trans. Vis. Comput. Graph. 2022, 29, 3158–3168. [Google Scholar] [CrossRef]
- Cui, Z.; Li, C.; Chen, N.; Wei, G.; Chen, R.; Zhou, Y.; Shen, D.; Wang, W. TSegNet: An efficient and accurate tooth segmentation network on 3D dental model. Med. Image Anal. 2021, 69, 101949. [Google Scholar] [CrossRef]
- Lu, D.; Xie, Q.; Wei, M.; Gao, K.; Xu, L.; Li, J. Transformers in 3d point clouds: A survey. arXiv 2022, arXiv:2205.07417. [Google Scholar]
- Hosseinimanesh, G.; Ghadiri, F.; Alsheghri, A.; Zhang, Y.; Keren, J.; Cheriet, F.; Guibault, F. Improving the quality of dental crown using a transformer-based method. In Proceedings of the Medical Imaging 2023: Physics of Medical Imaging, San Diego, CA, USA, 19–23 February 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12463, pp. 802–809. [Google Scholar]
- Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point Transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268. [Google Scholar]
- Wu, X.; Lao, Y.; Jiang, L.; Liu, X.; Zhao, H. Point transformer v2: Grouped vector attention and partition-based pooling. Adv. Neural Inf. Process. Syst. 2022, 35, 33330–33342. [Google Scholar]
- Alsheghri, A.; Ladini, Y.; Hosseinimanesh, G.; Chafi, I.; Keren, J.; Cheriet, F.; Guibault, F. Adaptive Point Learning with Uncertainty Quantification to Generate Margin Lines on Prepared Teeth. Appl. Sci. 2024, 14, 9486. [Google Scholar] [CrossRef]
- Wu, T.H.; Lian, C.; Piers, C.; Pastewait, M.; Wang, L.; Shen, D.; Ko, C.C. Machine (deep) learning for orthodontic CAD/CAM technologies. In Machine Learning in Dentistry; Springer: Cham, Switzerland, 2021; pp. 117–129. [Google Scholar]
- Schroeder, W.; Martin, K.; Lorensen, B. The Visualization Toolkit, 4th ed.; Kitware: Clifton Park, NJ, USA, 2006. [Google Scholar]
- Zhao, M.; Ma, L.; Tan, W.; Nie, D. Interactive tooth segmentation of dental models. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 654–657. [Google Scholar]
- Wu, T.H.; Lian, C.; Lee, S.; Pastewait, M.; Piers, C.; Liu, J.; Wang, F.; Wang, L.; Chiu, C.Y.; Wang, W.; et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans. IEEE Trans. Med. Imaging 2022, 41, 3158–3166. [Google Scholar] [CrossRef] [PubMed]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5828–5839. [Google Scholar]
- Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 1222–1239. [Google Scholar] [CrossRef]
- Kašparová, M.; Halamová, S.; Dostálová, T.; Procházka, A. Intra-oral 3D scanning for the digital evaluation of dental arch parameters. Appl. Sci. 2018, 8, 1838. [Google Scholar] [CrossRef]
- Altman, D.; Bland, J. Statistics notes: Standard deviations and standard errors. Br. Med. J. 2005, 331, 903. [Google Scholar] [CrossRef]
- Rubiu, G.; Bologna, M.; Cellina, M.; Cè, M.; Sala, D.; Pagani, R.; Mattavelli, E.; Fazzini, D.; Ibba, S.; Papa, S.; et al. Teeth segmentation in panoramic dental X-ray using mask regional convolutional neural network. Appl. Sci. 2023, 13, 7947. [Google Scholar] [CrossRef]
Class | Gingiva | Tooth | Prep |
---|---|---|---|
DSC | 0.956 | 0.975 | 0.951 |
SEN | 0.963 | 0.972 | 0.983 |
PPV | 0.950 | 0.978 | 0.951 |
Settings | Lower | Upper |
---|---|---|
w/o die | ||
w/o MC | ||
w/o PP | ||
default | 0.936 ± 0.008 | 0.948 ± 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsheghri, A.; Zhang, Y.; Hosseinimanesh, G.; Keren, J.; Cheriet, F.; Guibault, F. Robust Segmentation of Partial and Imperfect Dental Arches. Appl. Sci. 2024, 14, 10784. https://doi.org/10.3390/app142310784
Alsheghri A, Zhang Y, Hosseinimanesh G, Keren J, Cheriet F, Guibault F. Robust Segmentation of Partial and Imperfect Dental Arches. Applied Sciences. 2024; 14(23):10784. https://doi.org/10.3390/app142310784
Chicago/Turabian StyleAlsheghri, Ammar, Ying Zhang, Golriz Hosseinimanesh, Julia Keren, Farida Cheriet, and François Guibault. 2024. "Robust Segmentation of Partial and Imperfect Dental Arches" Applied Sciences 14, no. 23: 10784. https://doi.org/10.3390/app142310784
APA StyleAlsheghri, A., Zhang, Y., Hosseinimanesh, G., Keren, J., Cheriet, F., & Guibault, F. (2024). Robust Segmentation of Partial and Imperfect Dental Arches. Applied Sciences, 14(23), 10784. https://doi.org/10.3390/app142310784