Effect of the Inoculation Method on the Potential Plant Growth-Promoting Activity of a Microbial Synthetic Consortium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Culturable Aerobic Bacteria from the Phyllosphere of Mediterranean Plants
2.2. Phosphate Solubilization, N Fixation Capacity, and Salt Tolerance Determination
2.3. Molecular Identification of Culturable Bacteria
2.4. Nucleotide Sequence Accession Numbers
2.5. Experimental Set-Up
2.6. PGPR Treatment
2.7. Plant Biomass Production, Allocation, and Plant Structure
2.8. Statistical Analysis
3. Results
3.1. Phenotypic Characterization of Culturable Bacteria Isolates
3.2. Molecular Characterization of Culturable Bacteria
3.3. Plant Biomass
3.4. Plant Above-Ground Structure and Leaf Traits
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, C.A.; Saravanan, R.S. Polymicrobial multi-functional approach for enhancement of crop productivity. Adv. Appl. Microbiol. 2013, 82, 53–113. [Google Scholar] [PubMed]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef]
- Berruto, C.A.; Demirer, G.S. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol. 2024, 29, 858–873. [Google Scholar] [CrossRef]
- Khan, S.T. Consortia-based microbial inoculants for sustaining agricultural activities. Appl. Soil Ecol. 2022, 176, 104503. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, L.; Zabal-Aguirre, M.; González-Martínez, S.C.; Buée, M.; Verdú, M.; Rincón, A.; Goberna, M. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. J. Ecol. 2019, 107, 1594–1605. [Google Scholar] [CrossRef]
- Mahmud, K.; Missaoui, A.; Lee, K.; Ghimire, B.; Presley, H.W.; Makaju, S. Rhizosphere microbiome manipulation for sustainable crop production. Curr. Plant Biol. 2021, 27, 100210. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Fürnkranz, M.; Wanek, W.; Richter, A.; Abell, G.; Rasche, F.; Sessitsch, A. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME 2008, 2, 561–570. [Google Scholar] [CrossRef]
- Moreau, D.; Bardgett, R.D.; Finlay, R.D.; Jones, D.L.; Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 2019, 33, 540–552. [Google Scholar] [CrossRef]
- Lorenzi, A.S.; Bonatelli, M.L.; Chia, M.A.; Peressim, L.; Quecine, M.C. Opposite sides of Pantoea agglomerans and its associated commercial outlook. Microorganisms 2022, 10, 2072. [Google Scholar] [CrossRef] [PubMed]
- Raymond, N.S.; Gómez-Muñoz, B.; van der Bom, F.J.T.; Nybroe, O.; Jensen, L.S.; Müller-Stöver, D.S.; Oberson, A.; Richardson, A.E. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, K.C.; Sharma, P.; Sirari, A.; Singh, I.; Gill, B.S.; Singh, U.; Saharan, K. Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J. Microbiol. Biotechnol. 2021, 35, 47. [Google Scholar] [CrossRef]
- de Andrade, L.A.; Santos, C.H.B.; Frezarin, E.T.; Sales, L.R.; Rigobelo, E.C. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms 2023, 11, 1088. [Google Scholar] [CrossRef]
- Mantelin, S.; Desbrosses, G.; Larcher, M.; Tranbarger, T.J.; Cleyet-Marel, J.C.; Touraine, B. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 2006, 223, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Apine, O.A.; Jadhav, J.P. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 2011, 110, 1235–1244. [Google Scholar] [CrossRef]
- Ferreira Rêgo, M.C.; Ilkiu-Borges, F.; De Filippi, M.C.C.; Gonçalves, L.A.; Da Silva, G.B. Morphoanatomical and biochemical changes in the roots of rice plants induced by plant growth-promoting microorganisms. J. Bot. 2014, 2014, 818797. [Google Scholar] [CrossRef]
- Marín, O.; Gonzalez, B.; Poupin, M.J. From microbial dynamics to functionality in the rhizosphere: A systematic review of the opportunities with synthetic microbial communities. Front. Plant Sci. 2021, 12, 650609. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, J.; Uribe-Vélez, D. Selection of mixed inoculants exhibiting growth-promoting activity in rice plants from undefined consortia obtained by continuous enrichment. Plant Soil 2014, 375, 215–227. [Google Scholar] [CrossRef]
- Azizi, S.; Tabari, M.; Abad, A.R.F.N.; Ammer, C.; Guidi, L.; Bader, M.K.-F. Soil inoculation with beneficial microbes buffers negative drought effects on biomass, nutrients, and water relations of common myrtle. Front. Plant Sci. 2022, 13, 892826. [Google Scholar] [CrossRef]
- Mehnaz, S.; Baig, D.N.; Lazarovits, G. Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J. Microbiol. Biotechnol. 2010, 20, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Hanna Faist, A.S.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Gamalero, E.; Glick, B.R. Recent advances in bacterial amelioration of plant drought and salt stress. Biology 2022, 11, 437. [Google Scholar] [CrossRef]
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; et al. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 2017, 8, 172. [Google Scholar] [CrossRef]
- Peñuelas, J.; Rico, L.; Ogaya, R.; Jump, A.S.; Terradas, J.J.P.B. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 2012, 14, 565–575. [Google Scholar] [CrossRef]
- Aung, K.; Jiang, Y.; He, S.Y. The role of water in plant-microbe interactions. Plant J. 2018, 93, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Vorholt, J.A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840. [Google Scholar] [CrossRef]
- Fuchs, F.; Petruschke, C.; Schreiber, L. Interaction of epiphyllic bacteria with plant cuticles. In Plant Microbiome Paradigm; Varma, A., Tripathi, S., Prasad, R., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Abou Jaoudé, R.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. A plant’s perception of growth-promoting bacteria and their metabolites. Front. Plant Sci. 2024, 14, 1332864. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Peng, J.; Chen, C.; Xiong, C.; Li, S.; Ge, A.; Wang, E.; Liesack, W. Harnessing biological nitrogen fixation in plant leaves. Trends Plant Sci. 2023, 28, 1391–1405. [Google Scholar] [CrossRef]
- Reed, S.C.; Cleveland, C.C.; Townsend, A.R. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 2008, 89, 2924–2934. [Google Scholar] [CrossRef]
- Liberati, D.; de Dato, G.; Guidolotti, G.; De Angelis, P. Linking photosynthetic performances with the changes in cover degree of three Mediterranean shrubs under climate manipulation. Oikos 2018, 127, 1633–1645. [Google Scholar] [CrossRef]
- Yadav, R.K.P.; Karamanoli, K.; Vokou, D. Bacterial populations on the phyllosphere of Mediterranean plants: Influence of leaf age and leaf surface. Front. Agric. China 2011, 5, 60–63. [Google Scholar] [CrossRef]
- Yadav, R.K.P.; Halley, J.M.; Karamanoli, K.; Constantinidou, H.I.; Vokou, D. Bacterial populations on the leaves of Mediterranean plants: Quantitative features and testing of distribution models. Environ. Exp. Bot. 2004, 52, 63–77. [Google Scholar] [CrossRef]
- Idbella, M.; De Filippis, F.; Zotti, M.; Sequino, G.; Abd-ElGawad, A.M.; Fechtali, T.; Mazzoleni, S.; Bonanomi, G. Specific microbiome signatures under the canopy of Mediterranean shrubs. Appl. Soil Ecol. 2022, 173, 104407. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology 1948, 17, 362–370. [Google Scholar]
- Ashby, S.F. Some observations on the assimilation of atmospheric nitrogen by a free living soil organism—Azotobacter chroococcum of Beijerinck. J. Agric. Sci. 1907, 2, 35–51. [Google Scholar] [CrossRef]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory; Cold Spring Harbor: New York, NY, USA, 1972. [Google Scholar]
- Premono, M.E.; Moawad, A.M.; Vleck, P.L.G. Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones. J. Crop Sci. 1996, 11, 13–23. [Google Scholar]
- Chalita, M.; Kim, Y.O.; Park, S.; Oh, H.S.; Cho, J.H.; Moon, J.; Baek, N.; Moon, C.; Lee, K.; Yang, J.; et al. EzBioCloud: A genome-driven database and platform for microbiome identification and discovery. Int. J. Syst. Evol. Microbiol. 2024, 74, 006421. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, U.; Palmer, J.; Ling, P.; Altland, J. Effects of electrical conductivity, pH, and foliar application of calcium chloride on yield and tipburn of Lactuca sativa grown using the nutrient–film technique. HortScience 2020, 55, 1265–1271. [Google Scholar] [CrossRef]
- Sayyed, R.Z. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: Volume 2: Rhizobacteria in Biotic Stress Management; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 13. [Google Scholar]
- Jiang, G.; Zhang, Y.; Gan, G.; Li, W.; Wan, W.; Jiang, Y.; Yang, T.; Zhang, Y.; Xu, Y.; Wang, Y.; et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME Commun. 2022, 2, 10. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lim, C.Y.; Teng, W.L.; Ouwehand, A.C.; Tuomola, E.M.; Salminen, S. Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl. Environ. Microbiol. 2000, 66, 3692–3697. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Brik, R.B.; et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018, 174, 1388–1405.e21. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Mashwani, Z.-U.; Hayat, R.; Yasmin, H.; Noureldeen, A.; Ahmad, P. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiol. Biochem. 2021, 166, 160–176. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, M.A.; Ruiz-Dıéz, B.; Fajardo, S.; López-Berdonces, M.A.; Higueras, P.L.; Fernández-Pascual, M. Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiol. Biochem. 2013, 73, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Vaishnav, A.; Jain, S.; Varma, A.; Choudhary, D.K. Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J. Plant Growth Regul. 2015, 34, 558–573. [Google Scholar] [CrossRef]
- Wang, J.; Ishfaq, M.; Miao, Y.; Liu, Z.; Hao, M.; Wang, C.; Wang, J.; Chen, X. Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poult. Sci. 2022, 101, 101693. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Exp. 2017, 7, 153. [Google Scholar] [CrossRef]
- Pati, B.R.; Sengupta, S.; Chandra, A.K. Impact of selected phyllospheric diazotrophs on the growth of wheat seedlings and assay of the growth substances produced by the diazotrophs. Microbiol. Res. 1995, 150, 121–127. [Google Scholar] [CrossRef]
- Puente, M.L.; Gualpa, J.L.; Lopez, G.A.; Molina, R.M.; Carletti, S.M.; Cassán, F.D. The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis 2018, 76, 41–49. [Google Scholar] [CrossRef]
- Giri, S.; Pati, B.R. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. AMIH 2004, 51, 47–56. [Google Scholar]
- Abdelkhalek, A.; El-Gendi, H.; Al-Askar, A.A.; Maresca, V.; Moawad, H.; Elsharkawy, M.M.; Younes, H.A.; Behiry, S.I. Enhancing systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic virus via soil application and foliar spray of nitrogen-fixing Rhizobium leguminosarum bv. viciae strain 33504-Alex1. Front. Plant Sci. 2022, 13, 933498. [Google Scholar] [CrossRef]
- Ferrari, M.; Dal Cortivo, C.; Panozzo, A.; Barion, G.; Visioli, G.; Giannelli, G.; Vamerali, T. Comparing soil vs. foliar nitrogen supply of the whole fertilizer dose in common wheat. Agronomy 2021, 11, 2138. [Google Scholar] [CrossRef]
- van der Wal, A.; Tecon, R.; Kreft, J.-U.; Mooij, W.M.; Leveau, J.H.J. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PLoS ONE 2013, 8, e75633. [Google Scholar] [CrossRef]
- Yadav, R.K.P.; Karamanoli, K.; Vokou, D. Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Microb. Ecol. 2005, 50, 185–196. [Google Scholar] [CrossRef]
- de Dato, G.; Lagomarsino, A.; Abou Jaoudé, R.; De Angelis, P. Soil carbon sequestration and mineralization potential in an old-field revegetated with shrubs in semi-arid climate conditions. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; p. 12076. [Google Scholar]
- Maurice, K.; Bourceret, A.; Robin-Soriano, A.; Vincent, B.; Boukcim, H.; Selosse, M.A.; Ducousso, M. Simulated precipitation in a desert ecosystem reveals specific response of rhizosphere to water and a symbiont response in freshly emitted roots. Appl. Soil Ecol. 2024, 199, 105412. [Google Scholar] [CrossRef]
- Postiglione, A.; Prigioniero, A.; Zuzolo, D.; Tartaglia, M.; Scarano, P.; Maisto, M.; Ranauda, M.A.; Sciarrillo, R.; Thijs, S.; Vangronsveld, J.; et al. Quercus ilex phyllosphere microbiome environmental-driven structure and composition shifts in a Mediterranean contex. Plants 2022, 11, 3528. [Google Scholar] [CrossRef]
- Santoyo, G. How plants recruit their microbiome? New insights into beneficial interactions. J. Adv. Res. 2022, 40, 45–58. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T.; Chen, Y.; Wang, M.; Lu, Q.; Wang, K.; Dou, Z.; Chi, Z.; Qiu, W.; Dai, J.; et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize. Nat. Comn. 2024, 15, 839. [Google Scholar] [CrossRef] [PubMed]
- Newberger, D.R.; Minas, I.S.; Manter, D.K.; Vivanco, J.M. Shifts of the soil microbiome composition induced by plant–plant interactions under increasing cover crop densities and diversities. Sci. Rep. 2023, 13, 17150. [Google Scholar] [CrossRef] [PubMed]
- Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Kasimatis, C.-N.; Kakabouki, I.; Leonidakis, D.; Danalatos, N.; et al. Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci. Rep. 2022, 12, 11598. [Google Scholar] [CrossRef] [PubMed]
- Kordatzaki, G.; Katsenios, N.; Giannoglou, M.; Andreou, V.; Chanioti, S.; Katsaros, G.; Savvas, D.; Efthimiadou, A. Effect of foliar and soil application of plant growth promoting bacteria on kale production and quality characteristics. Sci. Hortic. 2022, 301, 111094. [Google Scholar] [CrossRef]
- Weigelt, A.; Mommer, L.; Andraczek, K.; Iversen, C.M.; Bergmann, J.; Bruelheide, H.; Fan, Y.; Freschet, G.T.; Guerrero-Ramírez, N.R.; Kattge, J.; et al. An integrated framework of plant form and function: The belowground perspective. New Phytol. 2021, 232, 42–59. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; de la Osa, C.; Valderrama-Fernández, R.; Nogueira, M.A.; Megías, M.; Hungria, M. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch. Microbiol. 2018, 200, 1191–1203. [Google Scholar] [CrossRef]
Site | Strain | Colony Diameter (cm) | PS * | NF | |||
---|---|---|---|---|---|---|---|
NaCl (%) | PI | +/− | |||||
0 | 5 | 7.5 | 10 | ||||
MP | |||||||
1 | 0.85 | 0.96 | − | − | 1.87 | − | |
2 | 0.91 | 0.87 | 0.74 | 0.74 | 1.50 | − | |
3 | 1.61 | 0.94 | − | − | − | + | |
4 | 1.11 | 0.92 | − | − | 1.60 | + | |
21 | 0.78 | 0.64 | 0.58 | 0.55 | 1.40 | − | |
22 | 0.77 | 0.77 | 0.63 | 0.51 | 1.88 | − | |
23 | 1.23 | 0.64 | − | − | − | − | |
24 | 0.74 | 0.57 | 0.66 | 0.51 | 1.48 | + | |
PP | |||||||
5 | 0.85 | 1.58 | 0.93 | 0.73 | 1.88 | − | |
6 | 1.18 | 1.24 | 1.01 | 0.68 | − | − | |
7 | 1.18 | 0.92 | 0.86 | 0.72 | − | − | |
8 | 1.11 | 1.07 | 0.90 | 0.64 | − | − | |
16 | 1.03 | 3.21 | 0.69 | 0.58 | − | − | |
G | |||||||
17 | 0.95 | 0.67 | 0.58 | 0.47 | 1.54 | − | |
18 | 0.60 | 0.65 | 0.55 | 0.58 | − | − | |
19 | 0.73 | 0.74 | 0.74 | 0.52 | 2.00 | − | |
20 | 1.09 | 3.22 | 0.71 | 0.54 | − | − | |
29 | 1.14 | 0.75 | 0.60 | − | − | − | |
30 | 1.27 | 2.12 | 1.88 | − | − | + | |
31 | 0.60 | 0.81 | 0.71 | 0.62 | − | − | |
32 | 0.94 | 0.69 | 0.70 | 0.54 | 1.37 | − | |
M | |||||||
33 | 0.76 | 0.65 | 0.62 | 0.68 | − | − | |
34 | 0.99 | 0.85 | 0.65 | 0.57 | 1.21 | + | |
35 | 0.76 | 0.75 | 0.60 | 0.59 | − | − | |
57 | 0.62 | 0.67 | 0.56 | 0.49 | − | − | |
58 | 0.71 | 0.92 | 0.61 | 0.61 | − | − | |
59 | 1.08 | 0.96 | 0.84 | 0.65 | 1.17 | − | |
60 | 0.86 | 0.70 | 0.64 | 0.61 | − | − |
NL | ALA | TLA | LMA | |||||
---|---|---|---|---|---|---|---|---|
No. Leaves Per Plant | cm2 | cm2 | g m−2 | |||||
C | 9.60 | B | 18.43 | A | 177.38 | A | 21.98 | B |
R | 10.00 | AB | 15.79 | AB | 157.36 | AB | 23.08 | B |
L | 9.60 | B | 13.38 | B | 128.79 | B | 24.95 | B |
RL | 10.80 | A | 16.36 | AB | 176.20 | A | 29.46 | A |
s.e. | ||||||||
C | 0.24 | 0.84 | 10.93 | 0.54 | ||||
R | 0.32 | 0.74 | 5.95 | 0.82 | ||||
L | 0.24 | 1.10 | 12.28 | 1.72 | ||||
RL | 0.37 | 0.72 | 7.02 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou Jaoudé, R.; Ficca, A.G.; Luziatelli, F.; Ruzzi, M. Effect of the Inoculation Method on the Potential Plant Growth-Promoting Activity of a Microbial Synthetic Consortium. Appl. Sci. 2024, 14, 10797. https://doi.org/10.3390/app142310797
Abou Jaoudé R, Ficca AG, Luziatelli F, Ruzzi M. Effect of the Inoculation Method on the Potential Plant Growth-Promoting Activity of a Microbial Synthetic Consortium. Applied Sciences. 2024; 14(23):10797. https://doi.org/10.3390/app142310797
Chicago/Turabian StyleAbou Jaoudé, Renée, Anna Grazia Ficca, Francesca Luziatelli, and Maurizio Ruzzi. 2024. "Effect of the Inoculation Method on the Potential Plant Growth-Promoting Activity of a Microbial Synthetic Consortium" Applied Sciences 14, no. 23: 10797. https://doi.org/10.3390/app142310797
APA StyleAbou Jaoudé, R., Ficca, A. G., Luziatelli, F., & Ruzzi, M. (2024). Effect of the Inoculation Method on the Potential Plant Growth-Promoting Activity of a Microbial Synthetic Consortium. Applied Sciences, 14(23), 10797. https://doi.org/10.3390/app142310797