Assessment of Soil Loss Due to Wind Erosion and Dust Deposition: Implications for Sustainable Management in Arid Regions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Collection of Dust and Soil Samples
2.3. Climatic Conditions in the Study Area
2.4. Characterization of Collected Dust and Soil Samples
2.5. Estimation of Wind Erosion and Dust Deposition
2.6. Sensitivity Analysis Using the Kriging Method and GIS
2.7. Statistical Analysis
3. Results and Discussion
3.1. Variations in Climatic Conditions
3.2. Extent of Dust Accumulation and Soil Loss
3.2.1. Extent of Dust Accumulation
3.2.2. Soil Loss Analysis
3.2.3. Temporal and Spatial Variation
3.2.4. Implications of Dust Accumulation
3.3. Chemical Properties of Dust and Soil Samples
3.4. Mineralogical Properties of Dust and Soil
3.5. Classification of Study Area
3.6. Impacts of Falling Dust on Soil
3.7. Environmental Impact of Dust Storms and Wind Erosion
3.7.1. Key Observations of Wind Erosion and Dust Deposition in Al-Baha Region
3.7.2. Sensitivity Analysis of Wind-Erosion and Dust-Deposition Impacts in Al-Baha
3.7.3. Implications for Sustainable Development in Saudi Arabia
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doula, M.K. Soil: Threats and Protection. Sustainable Agriculture. In Social Responsibility and Science in Innovation Economy; Kawalec, P., Wierzchoslawski, R.P., Eds.; John Paul II Catholic University of Lublin: Lublin, Poland, 2015; pp. 193–272. [Google Scholar]
- Guo, Z.; Huang, N.; Dong, Z.; Van Pelt, R.S.; Zobeck, T.M. Wind erosion induced soil degradation in Northern China: Status, measures and perspective. Sustainability 2014, 6, 8951–8966. [Google Scholar] [CrossRef]
- Rezaei, M.; Abbasi, S.; Pourmahmood, H.; Oleszczuk, P.; Ritsema, C.; Turner, A. Microplastics in agricultural soils from a semi-arid region and their transport by wind erosion. Environ. Res. 2022, 212, 113213. [Google Scholar] [CrossRef] [PubMed]
- Jarrah, M.; Mayel, S.; Tatarko, J.; Funk, R.; Kuka, K. A review of wind erosion models: Data requirements, processes, and validity. Catena 2020, 187, 104388. [Google Scholar] [CrossRef]
- ELD Initiative. The Value of Land: Prosperous Lands and Positive Rewards Through Sustainable Land Management; The Economics of Land Degradation Initiative: Bonn, Germany, 2015; Available online: https://reliefweb.int/report/world/value-land-prosperous-lands-and-positive-rewards-through-sustainable-land-management, (accessed on 1 November 2024).
- UNEP; WMO; UNCCD. Global Assessment of Sand and Dust Storms; DEW/1971/NA; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Joyce, L.A.; Briske, D.D.; Brown, J.R.; Polley, H.W.; McCarl, B.A.; Bailey, D.W. Climate change and North American Rangelands: Assessment of mitigation and adaptation strategies. Rangel. Ecol. Manag. 2013, 66, 512–528. [Google Scholar] [CrossRef]
- Clow, D.W.; Williams, M.W.; Schuster, P.F. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry. Atmos. Environ. 2016, 146, 183–194. [Google Scholar] [CrossRef]
- Chi, W.; Zhao, Y.; Kuang, W.; He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 2019, 668, 204–215. [Google Scholar] [CrossRef]
- Omran, E.S.; Negm, A.M. Climate Change Impacts on Agriculture and Food Security in Egypt Land and Water Resources—Smart Farming—Livestock, Fishery, and Aquaculture; Springer: Cham, Switzerland, 2020; Available online: https://link.springer.com/book/10.1007/978-3-030-41629-4, (accessed on 1 November 2024).
- Alsubhi, Y.; Qureshi, S.; Assiri, M.E.; Siddiqui, M.H. Quantifying the Impact of Dust Sources on Urban Physical Growth and Vegetation Status: A Case Study of Saudi Arabia. Remote Sens. 2022, 14, 5701. [Google Scholar] [CrossRef]
- Middleton, N.; Kashani, S.S.; Attarchi, S.; Rahnama, M.; Mosalman, S.T. Synoptic causes and socio-economic consequences of a severe dust storm in the Middle East. Atmosphere 2021, 12, 1435. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Modaihsh, A.; Ghoneim, A.; Al-Barakah, F.; Mahjoub, M.; Nadeem, M. Characterizations of Deposited Dust Fallout in Riyadh City, Saudi Arabia. Pol. J. Environ. Stud. 2017, 26, 1599–1605. [Google Scholar] [CrossRef]
- Sivakumar, M.V. Impacts of Sandstorms/Dust Storms on Agriculture. In Natural Disasters and Extreme Events in Agriculture: Impacts and Mitigation; Springer: Berlin/Heidelberg, Germany, 2005; pp. 159–177. [Google Scholar] [CrossRef]
- Wang, X.; Oenema, O.; Hoogmoed, W.B.; Perdok, U.D.; Cai, D. Dust storm erosion and its impact on soil carbon and nitrogen losses in northern China. Catena 2006, 66, 221–227. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Lana-Renault, N.; Nadal-Romero, E.; Cerdà, A. Ongoing and emerging questions in water erosion studies. Land Degrad. Dev. 2017, 28, 5–21. [Google Scholar] [CrossRef]
- Issaka, S.; Ashraf, M. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Omran, E.S.; Negm, A.M. Introduction to “Insights into Egypt’s Strategy to Meet the Sustainable Development Goals and Agenda 2030: Researchers’ Contributions”. In Egypt’s Strategy to Meet the Sustainable Development Goals and Agenda 2030: Researchers’ Contributions; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- McCabe, M.; AlShalan, M.; Hejazi, M.; Beck, H.; Maestre, F.T.; Guirado, E.; Peixoto, R.S.; Duarte, C.M.; Wada, Y.; Al-Ghamdi, S.; et al. Climate Futures Report: Saudi Arabia in a 3-Degrees Warmer World; King Abdullah University of Science and Technology: Thuwal, Saudi Arabia, 2023. [Google Scholar] [CrossRef]
- Chappell, A.; Baldock, J.A. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices. Aeolian Res. 2016, 22, 107–116. [Google Scholar] [CrossRef]
- Rattan, L. Soil Erosion and Gaseous Emissions. Appl. Sci. 2020, 10, 2784. [Google Scholar] [CrossRef]
- Lackoóvá, L.; Lieskovský, J.; Nikseresht, F.; Halabuk, A.; Hilbert, H.; Halászová, K.; Bahreini, F. Unlocking the Potential of Remote Sensing in Wind Erosion Studies: A Review and Outlook for Future Directions. Remote Sens. 2023, 15, 3316. [Google Scholar] [CrossRef]
- Funk, R. Assessment and measurement of wind erosion. In Novel Methods for Monitoring and Managing Land and Water Resources in Siberia; Springer: Cham, Switzerland, 2016; pp. 425–449. Available online: https://link.springer.com/book/10.1007/978-3-319-24409-9 (accessed on 1 November 2024).
- Dwivedi, R.S. Wind Erosion. In Geospatial Technologies for Land Degradation Assessment and Management; CRC Press: Boca Raton, FL, USA, 2018; pp. 197–227. [Google Scholar]
- Alghamdi, A.A.; Al-Kahtani, N.S. Sand control measures and sand drift fences. J. Perform. Constr. Facil. 2005, 19, 295–299. [Google Scholar] [CrossRef]
- Duniway, M.C.; Pfennigwerth, A.A.; Fick, S.E.; Nauman, T.W.; Belnap, J.; Barger, N.N. Wind erosion and dust from US drylands: A review of causes, consequences, and solutions in a changing world. Ecosphere 2019, 10, e02650. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Alshaal, T.A.; Amer, M.; Domokos-Szabolcsy, É.; Elhawat, N.; Prokisch, J.; Fári, M. Soil quality and plant nutrition. In Sustainable Agriculture Reviews 14: Agroecology and Global Change; Springer: Cham, Switzerland, 2014; pp. 345–447. Available online: https://link.springer.com/book/10.1007/978-3-319-06016-3 (accessed on 1 November 2024).
- Tong, D.Q.; Gill, T.E.; Sprigg, W.A.; Van Pelt, R.S.; Baklanov, A.A.; Barker, B.M.; Vimic, A.V. Health and safety effects of airborne soil dust in the Americas and beyond. Rev. Geophys. 2023, 61, e2021RG000763. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Soil Components and Human Health; Springer: Dordrecht, The Netherlands, 2018; pp. 223–255. Available online: https://link.springer.com/book/10.1007/978-94-024-1222-2 (accessed on 30 September 2024).
- Bristol-Alagbariya, E.T. UN Convention to Combat Desertification as an International Environmental Regulatory Framework for Protecting and Restoring the World’s Land towards a Safer, More Just and Sustainable Future. Int. J. Energy Environ. Res. 2023, 11, 1–32. [Google Scholar] [CrossRef]
- Valentina-Daniela, B.; Diana-Mura, B. Monitoring of Soil Desertification-Quality Parameters. In International Conference on Reliable Systems Engineering; Springer: Cham, Switzerland, 2023; pp. 56–65. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ghosh, B.N.; Dogra, P.; Mishra, P.K.; Santra, P.; Kumar, S.; Parmar, B. Soil conservation issues in India. Sustainability 2016, 8, 565. [Google Scholar] [CrossRef]
- Nair, P.R.; Kumar, B.M.; Nair, V.D.; Nair, P.R.; Kumar, B.M.; Nair, V.D. Soil Conservation and Control of Land-Degradation. In An Introduction to Agroforestry: Four Decades of Scientific Developments; Springer: Cham, Switzerland, 2021; pp. 445–474. Available online: https://link.springer.com/book/10.1007/978-3-030-75358-0 (accessed on 30 September 2024).
- Mohammed, A.; Georg, T.; Christoph, S.; Randolf, R. Challenges for an Integrated Groundwater Management in the Kingdom of Saudi Arabia. Int. J. Water Resour. Arid Environ. 2011, 1, 65–70. [Google Scholar]
- Goossens, D.; Buck, B.J. Can BSNE (Big Spring Number Eight) samplers be used to measure PM10, respirable dust, PM2.5 and PM1.0? Aeolian Res. 2012, 5, 43–49. [Google Scholar] [CrossRef]
- Mamadou, S.; Dirk, G.; Jean Louis, R. Calibration of the MDCO dust collector and of four versions of the inverted frisbee dust deposition sampler. Geomorphology 2006, 82, 360–375. [Google Scholar] [CrossRef]
- Richard, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture Handbook: Washington, DC, USA, 1954; Volume 60, p. 160. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Saleh, A.; Fryrear, D.W. Soil roughness for the revised wind erosion equation (RWEQ). J. Soil Water Conserv. 1999, 54, 473–476. [Google Scholar]
- Kafka, J.L.; Miller, M.A. A climatology of solar irradiance and its controls across the United States: Implications for solar panel orientation. Renew. Energy 2019, 135, 897–907. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Ravi, S.; Zhang, G.M.; D’Odorico, P. Salinity and Sodicity Effects on Soil Erodibility and Dust Emissions. In Soil Erosion Research Under a Changing Climate, 8–13 January 2023, Aguadilla, Puerto Rico, USA; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2023; p. 1. [Google Scholar] [CrossRef]
- Chen, F.; Chen, S.; Zhang, X.; Chen, J.; Wang, X.; Gowan, E.J.; Qiang, M.; Dong, G.; Wang, Z.; Li, Y.; et al. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nat. Commun. 2020, 11, 992. [Google Scholar] [CrossRef]
- Marx, S.K.; Kamber, B.S.; McGowan, H.A.; Petherick, L.M.; McTainsh, G.H.; Stromsoe, N.; Hooper, J.N.; May, J.H. Palaeo-dust records: A window to understanding past environments. Glob. Planet. Chang. 2018, 165, 13–43. [Google Scholar] [CrossRef]
- Mulitza, S.; Heslop, D.; Pittauerova, D.; Fischer, H.W.; Meyer, I.; Stuut, J.B.; Zabel, M.; Mollenhauer, G.; Collins, J.A.; Kuhnert, H.; et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 2010, 466, 226–228. [Google Scholar] [CrossRef]
- Wu, X.; Fan, J.; Sun, L.; Zhang, H.; Xu, Y.; Yao, Y.; Yan, X.; Zhou, J.; Jia, Y.; Chi, W. Wind erosion and its ecological effects on soil in the northern piedmont of the Yinshan Mountains. Ecol. Indic. 2021, 128, 107825. [Google Scholar] [CrossRef]
- Geilfus, C.M. Chloride in soil: From nutrient to soil pollutant. Environ. Exp. Bot. 2019, 157, 299–309. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America Special Publications; SSSA: Madison, WI, USA, 1996; Volume 49, pp. 169–185. [Google Scholar] [CrossRef]
- Prakash Jish, P.; Stenchikov, G.; Tao, W.; Yapici, T.; Warsama, B.; Engelbrecht, J.P. Arabian Red Sea coastal soils as potential mineral dust sources. Atmos. Chem. Phys. 2016, 16, 11991–12004. [Google Scholar] [CrossRef]
- Menéndez, I.; Diaz-Hernandez, J.L.; Mangas, J.; Alonso, I.; Sánchez-Soto, P.J. Airborne dust accumulation and soil development in the North-East sector of Gran Canaria (Canary Islands, Spain). J. Arid. Environ. 2007, 71, 57–81. [Google Scholar] [CrossRef]
- Silva, M.M.V.G.; Carvalho, P.C.; António, A.; Luís, A.C.M. Geochemistry of leptosols and fluvisols in the fast-growing city of Benguela (Angola) and assessment of potential risks. Geoderma Reg. 2020, 20, 00257. [Google Scholar] [CrossRef]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Dewitte, O.; Gallali, T.; Hallett, S.; Jones, R.; Kilasara, M.; et al. Soil Atlas of Africa; European Commission: Brussels, Belgium, 2013. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Zhang, T.H.; Lu, Y.L. Processes and characteristics of soil degradation of rainfed farmland in Horqin sandy land. J. Soil Water Conserv. 2002, 16, 25–28. [Google Scholar]
- Zhao, H.L.; Zhao, X.Y.; Zhang, T.H.; Zhou, R.L. Changes of soil environment and its effects on crop productivity in desertification process of sandy farmlands. Chin. J. Soil Water Conserv. 2002, 16, 1–4. [Google Scholar]
- Song, H.; Zhang, K.; Piao, S.; Liu, L.; Wang, Y.P.; Chen, Y.; Yang, Z.; Zhu, L.; Wan, S. Soil organic carbon and nutrient losses resulted from spring dust emissions in Northern China. Atmos. Environ. 2019, 213, 585–596. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
Location | Height from Sea Level (m) | Average Humidity (g km−3) | Average Wind Speed (m s−1) | Average Solar Radiation (KJ M−2 day−1) | Average Precipitation (mm) | Temperature (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
June | July | August | June | July | August | June | July | August | June | July | August | June | July | August | ||
S1 | 170 | 3589 | 4382 | 5073 | 3.1 | 3.3 | 2.5 | 24,061 | 21,242 | 22,558 | 0.7 | 0.1 | 5.2 | 48.6 | 44.1 | 41.5 |
S2 | 350 | 3377 | 4289 | 5765 | 2.9 | 2.9 | 2.4 | 24,343 | 21,597 | 22,281 | 0.6 | 2.0 | 6.6 | 45.7 | 40.2 | 35.0 |
S3 | 1920 | 1327 | 2176 | 2018 | 2.9 | 2.8 | 2.4 | 23,642 | 21,615 | 22,504 | 0.4 | 1.6 | 7.1 | 39.7 | 35.8 | 29.7 |
S4 | 2060 | 1470 | 2017 | 1928 | 2.9 | 2.9 | 2.5 | 23,601 | 21,609 | 22,263 | 0.3 | 1.1 | 6.9 | 41.3 | 38.8 | 33.2 |
S5 | 1560 | 1640 | 2054 | 2205 | 3.0 | 3.0 | 2.7 | 23,692 | 21,955 | 22,630 | 0.3 | 1.0 | 6.8 | 45.7 | 44.9 | 37.3 |
S6 | 165 | 3791 | 4393 | 5424 | 3.1 | 3.1 | 2.7 | 24,429 | 21,747 | 22,942 | 0.6 | 1.1 | 5.7 | 47.4 | 43.3 | 42.0 |
S7 | 420 | 3090 | 3960 | 5267 | 2.9 | 3.1 | 2.6 | 24,419 | 22,397 | 22,844 | 0.6 | 1.3 | 6.4 | 42.7 | 37.3 | 33.5 |
S8 | 1950 | 1415 | 2384 | 2091 | 2.8 | 2.8 | 2.3 | 23,584 | 21,507 | 22,185 | 0.5 | 1.2 | 6.8 | 42.7 | 37.3 | 33.5 |
S9 | 2080 | 1479 | 1979 | 1744 | 2.9 | 2.9 | 2.3 | 23,495 | 21,321 | 22,277 | 0.4 | 1.2 | 6.8 | 44.7 | 42.7 | 36.3 |
S10 | 1760 | 1545 | 1978 | 1716 | 2.9 | 2.8 | 2.3 | 23,504 | 21,560 | 22,409 | 0.5 | 1.2 | 6.4 | 42.6 | 40.4 | 35.0 |
S11 | 115 | 4179 | 4759 | 4928 | 3.0 | 3.2 | 2.6 | 23,761 | 21,119 | 21,995 | 0.7 | 0.8 | 5.5 | 50.3 | 44.4 | 43.5 |
S12 | 770 | 2552 | 3699 | 3558 | 3.0 | 3.1 | 2.6 | 24,261 | 22,646 | 23,085 | 0.6 | 1.3 | 6.4 | 41.9 | 34.9 | 31.3 |
S13 | 1550 | 1762 | 2841 | 2558 | 3.0 | 3.1 | 2.6 | 23,879 | 21,944 | 22,420 | 0.6 | 1.4 | 6.3 | 43.5 | 36.6 | 33.5 |
S14 | 2050 | 1512 | 1793 | 1558 | 3.0 | 2.9 | 2.4 | 23,365 | 21,386 | 21,961 | 0.6 | 1.2 | 6.9 | 40.3 | 38.5 | 32.1 |
S15 | 1550 | 1763 | 1928 | 1769 | 3.2 | 3.2 | 2.6 | 23,541 | 21,529 | 22,402 | 0.5 | 1.1 | 7.1 | 47.9 | 46.5 | 41.7 |
S16 | 820 | 2489 | 3693 | 4341 | 3.0 | 3.1 | 2.6 | 23,833 | 21,903 | 22,448 | 0.7 | 1.1 | 6.8 | 42.4 | 37.2 | 33.2 |
S17 | 380 | 2761 | 4373 | 4723 | 2.9 | 3.1 | 2.6 | 24,189 | 22,246 | 22,679 | 0.7 | 1.2 | 6.6 | 43.2 | 36.7 | 34.0 |
S18 | 2085 | 1494 | 2405 | 2875 | 2.9 | 2.9 | 2.5 | 23,204 | 21,234 | 21,671 | 0.8 | 1.1 | 8.7 | 39.2 | 37.3 | 31.7 |
S19 | 1955 | 1517 | 2621 | 2164 | 2.9 | 2.9 | 2.5 | 23,271 | 21,269 | 21,760 | 0.9 | 1.1 | 8.9 | 40.2 | 39.2 | 32.8 |
S20 | 1320 | 2183 | 1963 | 1685 | 3.0 | 3.4 | 2.7 | 23,480 | 21,481 | 22,288 | 0.3 | 0.6 | 6.0 | 51.1 | 48.8 | 43.7 |
Sites | Wind Erosion (ton ha−1) | Wind Surface (ton ha−1) | Dust Deposition (ton ha−1) |
---|---|---|---|
S1 | 0.00308 AB | 0.00531 ABC | 0.00949 B |
S2 | 0.00268 BCD | 0.00441 BCD | 0.00803 BCDE |
S3 | 0.00219 BCDE | 0.00358 CD | 0.00644 DE |
S4 | 0.00205 CDE | 0.00342 CD | 0.00588 E |
S5 | 0.00168 E | 0.00314 D | 0.00585 E |
S6 | 0.00311 AB | 0.00515 AB | 0.00955 B |
S7 | 0.00225 BCDE | 0.00418 BCD | 0.00803 BCDE |
S8 | 0.00198 CDE | 0.00333 CD | 0.00617 DE |
S9 | 0.00181 DE | 0.00335 CD | 0.00617 DE |
S10 | 0.00178 DE | 0.00343 CD | 0.00602 E |
S11 | 0.00363 A | 0.00608 A | 0.01327 A |
S12 | 0.00272 AB | 0.00444 BCD | 0.00802 BCDE |
S13 | 0.00262 BCD | 0.00425 BCD | 0.00764 BCDE |
S14 | 0.00237 BCDE | 0.00372 CD | 0.00737 BCDE |
S15 | 0.00231 BCDE | 0.00363 CD | 0.00706 CDE |
S16 | 0.00272 ABC | 0.00435 BCD | 0.00838 BCD |
S17 | 0.00290 ABC | 0.00452 BC | 0.00873 BC |
S18 | 0.00224 BCDE | 0.00367 CD | 0.00733 BCDE |
S19 | 0.00220 BCDE | 0.00355 CD | 0.00677 CDE |
S20 | 0.00211 CDE | 0.00369 CD | 0.00739 BCDE |
Site | pH | EC (dSm−1) | Cations and Anions (meq kg−1) | CaCO3 (%) | OM (%) | Textural Class | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | HCO3− | Cl− | SO42− | ||||||
S1 | 7.55 bcd | 10.67 a | 1.85 c | 165.98 a | 19.68 b | 3.70 cde | 1.89 gh | 211.56 a | 8.17 cd | 5.66 f | 0.61 cdefg | LS |
S2 | 7.65 abc | 0.97 e | 0.45 hijk | 4.99 cde | 21.62 b | 3.44 cdef | 3.00 c | 6.67 ghi | 5.17 ef | 13.58 bc | 0.85 ab | LS |
S3 | 7.58 bc | 4.44 c | 1.07 e | 20.42 cd | 37.34 a | 1.95 fg | 2.56 e | 63.25 cd | 14.09 a | 19.31 a | 0.82 abc | SL |
S4 | 7.38 d | 1.10 e | 0.85 f | 7.21 cde | 7.03 c | 6.16 b | 2.22 f | 15.22 fg | 4.25 ef | 9.58 de | 0.94 a | SL |
S5 | 7.53 cd | 0.99 e | 2.06 b | 2.54 e | 6.76 c | 8.39 a | 2.03 fg | 3.60 i | 6.86 cde | 13.39 bc | 0.87 ab | SL |
S6 | 7.65 abc | 0.38 e | 0.74 fg | 2.33 e | 4.32 c | 1.31 g | 1.88 gh | 3.38 i | 1.81 gh | 5.55 f | 0.74 abcde | SiL |
S7 | 7.74 ab | 0.64 e | 0.28 klm | 4.27 de | 4.24 c | 3.80 cd | 2.19 f | 14.50 gh | 0.61 h | 7.00 ef | 0.59 dfgh | SL |
S8 | 7.79 a | 1.05 e | 1.21 de | 6.80 cde | 4.94 c | 6.23 b | 2.78 d | 25.81 ef | 1.24 gh | 17.71 a | 0.71 bcde | SiL |
S9 | 7.64 abc | 0.23 e | 0.37 ijkl | 1.89 e | 3.07 c | 1.09 g | 2.50 e | 0.77 e | 1.29 gh | 5.70 f | 0.72 bcde | SL |
S10 | 7.65 abc | 0.35 e | 1.27 d | 1.38 e | 4.76 c | 1.69 g | 3.41 a | 1.59 e | 1.50 gh | 11.05 cd | 0.80 abcd | LS |
S11 | 7.76 a | 0.26 e | 0.73 fg | 1.88 e | 3.25 c | 0.84 g | 1.81 h | 2.86 e | 0.82 h | 6.06 ef | 0.45 gh | SL |
S12 | 7.63 abc | 0.36 e | 0.21 lm | 2.45 e | 5.54 c | 1.71 g | 2.84 cd | 1.13 i | 1.63 gh | 7.47 ef | 0.79 abcd | SiL |
S13 | 7.68 abc | 2.53 d | 0.59 gh | 18.57 cd | 16.37 b | 2.08 fg | 2.05 fg | 69.69 c | 8.50 bc | 19.62 a | 0.43 gh | SiL |
S14 | 7.66 abc | 0.75 e | 0.70 fg | 5.44 cde | 5.01 c | 4.44 c | 3.27 b | 4.39 h | 4.15 efg | 13.61 bc | 0.43 gh | LS |
S15 | 7.68 abc | 0.5 e | 0.17 mn | 2.74 e | 4.00 c | 1.91 fg | 1.56 h | 55.91 d | 4.92 ef | 14.71 b | 0.83 ab | SiL |
S16 | 7.74 ab | 0.45 e | 0.77 f | 5.10 cde | 5.22 c | 1.43 g | 2.19 f | 3.39 i | 2.89 fgh | 6.71 ef | 0.39 h | S |
S17 | 7.68 abc | 0.92 e | 0.21 lm | 8.69 cde | 4.75 c | 6.16 b | 2.09 fg | 26.28 e | 0.37 h | 12.33 bc | 0.54 efgh | SL |
S18 | 7.62 abc | 7.78 b | 2.28 a | 96.66 b | 20.11 b | 7.78 a | 1.91 gh | 106.94 b | 11.45 ab | 11.36 bcd | 0.49 fgh | SL |
S19 | 7.76 ac | 0.92 e | 0.02 n | 14.44 cde | 5.94 c | 2.21 efg | 0.91 i | 10.84 gh | 5.29 de | 6.98 ef | 0.59 defgh | SL |
S20 | 7.52 bcd | 0.46 e | 0.30 jklm | 0.97 e | 3.79 c | 2.68 defg | 2.94 cd | 1.80 i | 2.50 fgh | 11.80 bcd | 0.70 bcdef | SL |
LSD | 0.19 | 0.46 | 0.17 | 15.65 | 5.55 | 1.54 | 0.21 | 10.75 | 2.99 | 3.56 | 0.21 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, A.J.; Alghamdi, A.G.; Ibrahim, H.M. Assessment of Soil Loss Due to Wind Erosion and Dust Deposition: Implications for Sustainable Management in Arid Regions. Appl. Sci. 2024, 14, 10822. https://doi.org/10.3390/app142310822
Alzahrani AJ, Alghamdi AG, Ibrahim HM. Assessment of Soil Loss Due to Wind Erosion and Dust Deposition: Implications for Sustainable Management in Arid Regions. Applied Sciences. 2024; 14(23):10822. https://doi.org/10.3390/app142310822
Chicago/Turabian StyleAlzahrani, Abdulhakim J., Abdulaziz G. Alghamdi, and Hesham M. Ibrahim. 2024. "Assessment of Soil Loss Due to Wind Erosion and Dust Deposition: Implications for Sustainable Management in Arid Regions" Applied Sciences 14, no. 23: 10822. https://doi.org/10.3390/app142310822
APA StyleAlzahrani, A. J., Alghamdi, A. G., & Ibrahim, H. M. (2024). Assessment of Soil Loss Due to Wind Erosion and Dust Deposition: Implications for Sustainable Management in Arid Regions. Applied Sciences, 14(23), 10822. https://doi.org/10.3390/app142310822