From Single Shot to Structure: End-to-End Network-Based Deflectometry for Specular Free-Form Surface Reconstruction
Abstract
:1. Introduction
Paper Contributions
- Novel DNN-Based Approach for Deflectometry: We introduce VUDNet, the first deep neural network (DNN) designed specifically for end-to-end 3D reconstruction of free-form specular surfaces using single-shot deflectometry. VUDNet leverages a hybrid architecture that combines the strengths of both generative and discriminative models, ensuring high accuracy and generalization.
- Dataset Simulation: To train and evaluate our model, we simulated an extensive dataset. This dataset, which includes a variety of deformed specular surfaces and their corresponding depth maps, will be made publicly available to support future research in this field.
- Robust Performance in Challenging Environments: Experimental results demonstrate that VUDNet significantly outperforms existing methods in reconstructing 3D surfaces from single-shot 2D images, particularly in challenging environments. Our network demonstrates the ability to generalize across diverse scenarios.
2. Related Work
3. Method
3.1. Problem Formulation
- : The 2D reflected image of a pattern reflected by surface .
- : The ground truth depth map corresponding to surface .
- : The estimated depth map produced by our network.
- : The MLP function that combines the outputs of the VAE and U-Net to produce .
- : camera parameters.
- : The projection to render a 2D image I from surface .
- : The function mapping a 3D point to depth.
3.2. Architecture Overview
- Reduced Overfitting: Ensemble methods inherently reduce the risk of overfitting [34]. They are known for their ability to improve generalization by leveraging the strengths of multiple models and mitigating individual model biases [34]. In our work, this is especially true as we combine one discriminative model and one generative model. Each model captures different aspects of the data distribution, and their combination leads to a more generalizable solution.
- Complementary Strengths: The VAE’s ability to model complex data distributions complements the U-Net’s strength in preserving spatial details, making the ensemble approach particularly effective for depth estimation tasks.
- Improved Performance: Hybrid models that incorporate both generative and discriminative components have been shown to outperform single-method models in various tasks [35,36,37]. This combination harnesses the power of both methodologies, leading to improved performance in reconstructing 3D surfaces from 2D images.
3.3. Loss Function
3.4. Vudnet Discussion
4. Dataset Development
4.1. Setting up the Simulation Environment
4.2. Dataset Generation
4.3. Pattern
4.4. Shape Deformations
4.4.1. Surface Generation
- Shape Integration: To generate the Geometric Surfaces set, multiple convex shapes, primarily hemispheres, were superimposed onto a base planar surface at randomized positions and scales.
- Parametric Deformations: To generate the Deformation Surfaces set, the planar surface was deformed using a set of parametric functions , such as parabolic and sinusoidal transformations. These functions control the depth and curvature of the deformation, sculpting the surface into various forms.
- Randomization: To enhance diversity, the parameters involved in both geometric shape integration (size , position , and the number of hemispheres ) and deformations were randomized, resulting in a wide range of surface topologies , featuring variations from subtle indentations to pronounced curvatures.
- Specular Material Assignment: All generated surfaces were assigned a specular material to ensure that the generated data accurately represented real-world scenarios, where surface reflectivity significantly impacts depth perception.
4.4.2. Data Capture
- Rendering 2D Images: Each deformed surface was rendered under controlled lighting conditions to capture the specular reflections characteristic of real-world environments.
- Depth Map Acquisition: Depth maps were generated for each configuration, providing the precise geometric ground-truth information essential for training.
4.5. Depth Map Standardization
Algorithm 1 Normalize and Align Depth Map |
|
4.6. Data Preparation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwak, H.; Kim, J. Semiconductor multilayer nanometrology with machine learning. Nanomanufacturing Metrol. 2023, 6, 15. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Luo, Y.; Wan, J.; Luo, Z.; Chen, M. 3D Vision and Intelligent On-line Inspection in SMT Microelectronic Packaging: A Review. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 5, 779–789. [Google Scholar] [CrossRef]
- Jangra, P.; Duhan, M. Comparative analysis of devices working on optical and spintronic based principle. J. Opt. 2024, 53, 1629–1649. [Google Scholar] [CrossRef]
- Flores-Fuentes, W.; Arellano-Vega, E.; Sergiyenko, O.; Alba-Corpus, I.Y.; Rodríguez-Quiñonez, J.C.; Castro-Toscano, M.J.; González-Navarro, F.F.; Vasavi, S.; Miranda-Vega, J.E.; Hernández-Balbuena, D.; et al. Surface color estimation in 3D spatial coordinate remote sensing by a technical vision system. Opt. Quantum Electron. 2024, 56, 406. [Google Scholar] [CrossRef]
- Li, T.; Polette, A.; Lou, R.; Jubert, M.; Nozais, D.; Pernot, J.P. Machine Learning-Based 3D Scan Coverage Prediction for Smart-Control Applications. Comput. Aided Des. 2024, 176, 103775. [Google Scholar] [CrossRef]
- Prauzek, M.; Hercik, R.; Konecny, J.; Mikolajek, M.; Stankus, M.; Koziorek, J.; Martinek, R. An optical-based sensor for automotive exhaust gas temperature measurement. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Rak, G.; Hočevar, M.; Kolbl Repinc, S.; Novak, L.; Bizjan, B. A review on methods for measurement of free water surface. Sensors 2023, 23, 1842. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, R.; Zhao, J.; Wu, J.; Fu, S.; Chen, Y.; Sun, Y. Low coherence measurement methods for industrial parts with large surface reflectance variations. IEEE Trans. Instrum. Meas. 2023, 72, 7006514. [Google Scholar] [CrossRef]
- Burke, J.; Pak, A.; Höfer, S.; Ziebarth, M.; Roschani, M.; Beyerer, J. Deflectometry for specular surfaces: An overview. Adv. Opt. Technol. 2023, 12, 1237687. [Google Scholar] [CrossRef]
- Huang, L.; Idir, M.; Zuo, C.; Asundi, A. Review of phase measuring deflectometry. Opt. Lasers Eng. 2018, 107, 247–257. [Google Scholar] [CrossRef]
- Häusler, G.; Faber, C.; Olesch, E.; Ettl, S. Deflectometry vs. interferometry. In Proceedings of the Optical Measurement Systems for Industrial Inspection VIII, Munich, Germany, 13–17 May 2013; Volume 8788, pp. 367–377. [Google Scholar]
- Guan, J.; Li, J.; Yang, X.; Chen, X.; Xi, J. Defect detection method for specular surfaces based on deflectometry and deep learning. Opt. Eng. 2022, 61, 061407. [Google Scholar] [CrossRef]
- Wójcik, A.; Niemczewska-Wójcik, M.; Sładek, J. Assessment of free-form surfaces’ reconstruction accuracy. Metrol. Meas. Syst. 2017, 24, 303–312. [Google Scholar] [CrossRef]
- Orumi, M.A.B.; Sepanj, M.H.; Famouri, M.; Azimifar, Z.; Wong, A. Unsupervised Deep Shape from Template. In Proceedings of the Image Analysis and Recognition: 16th International Conference, ICIAR 2019, Waterloo, ON, Canada, 27–29 August 2019; Proceedings, Part I 16. Springer: Berlin/Heidelberg, Germany, 2019; pp. 440–451. [Google Scholar]
- Jiang, X.J.; Scott, P.J. Advanced Metrology: Freeform Surfaces; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Qiao, G.; Huang, Y.; Song, Y.; Yue, H.; Liu, Y. A single-shot phase retrieval method for phase measuring deflectometry based on deep learning. Opt. Commun. 2020, 476, 126303. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Ghim, Y.S.; Rhee, H.G. DYnet++: A deep learning based single-shot phase-measuring deflectometry for the 3D measurement of complex free-form surfaces. IEEE Trans. Ind. Electron. 2023, 71, 2112–2121. [Google Scholar] [CrossRef]
- Liang, H.; Sauer, T.; Faber, C. Using wavelet transform to evaluate single-shot phase measuring deflectometry data. In Proceedings of the Applications of Digital Image Processing XLIII, Online, 24 August–4 September 2020; Volume 11510, pp. 404–410. [Google Scholar]
- Mangione, N.S.; Wu, H.; Preston, C.; Lee, A.M.; Entezami, S.; Ségas, R.; Forysinski, P.W.; Suponitsky, V. Shape manipulation of a rotating liquid liner imploded by arrays of pneumatic pistons: Experimental and numerical study. Fusion Eng. Des. 2024, 198, 114087. [Google Scholar] [CrossRef]
- Qian, J.; Feng, S.; Li, Y.; Tao, T.; Han, J.; Chen, Q.; Zuo, C. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Opt. Lett. 2020, 45, 1842–1845. [Google Scholar] [CrossRef]
- Chang, H.T.; Lin, T.Y.; Chuang, C.H.; Chen, C.Y.; Ho, C.C.; Chang, C.Y. Separation of two-dimensional mixed circular fringe patterns based on spectral projection property in fractional Fourier transform domain. Appl. Sci. 2021, 11, 859. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, J.; Jiang, X.; Fan, L.; Wei, C.; Yue, H.; Liu, Y. High-precision dynamic three-dimensional shape measurement of specular surfaces based on deep learning. Opt. Express 2023, 31, 17437–17449. [Google Scholar] [CrossRef]
- Dupont, E.; Whye Teh, Y.; Doucet, A. Generative Models as Distributions of Functions. In Proceedings of the 25th International Conference on Artificial Intelligence and Statistics, Virtual, 28–30 March 2022; Camps-Valls, G., Ruiz, F.J.R., Valera, I., Eds.; Proceedings of Machine Learning Research. PMLR: Birmingham, UK, 2022; Volume 151, pp. 2989–3015. [Google Scholar]
- Lavrač, N.; Podpečan, V.; Robnik-Šikonja, M. Representation Learning: Propositionalization and Embeddings; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Nguyen, M.T.; Ghim, Y.S.; Rhee, H.G. One-shot deflectometry for high-speed inline inspection of specular quasi-plane surfaces. Opt. Lasers Eng. 2021, 147, 106728. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; Xu, B.; Willomitzer, O.C. Accurate Eye Tracking from Dense 3D Surface Reconstructions using Single-Shot Deflectometry. arXiv 2023, arXiv:2308.07298. [Google Scholar]
- Li, W.; Liu, T.; Tai, M.; Zhong, Y. Three-dimensional measurement for specular reflection surface based on deep learning and phase measuring profilometry. Optik 2022, 271, 169983. [Google Scholar] [CrossRef]
- Suresh, V.; Zheng, Y.; Li, B. PMENet: Phase map enhancement for Fourier transform profilometry using deep learning. Meas. Sci. Technol. 2021, 32, 105001. [Google Scholar] [CrossRef]
- Dou, J.; Wang, D.; Yu, Q.; Kong, M.; Liu, L.; Xu, X.; Liang, R. Deep-learning-based deflectometry for freeform surface measurement. Opt. Lett. 2022, 47, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.; Regier, J.; Jordan, M.I.; Yosef, N. Information constraints on auto-encoding variational bayes. Adv. Neural Inf. Process. Syst. 2018, 31, 6117–6128. [Google Scholar]
- Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; Carin, L. Variational autoencoder for deep learning of images, labels and captions. Adv. Neural Inf. Process. Syst. 2016, 29, 2360–2368. [Google Scholar]
- Pinheiro Cinelli, L.; Araújo Marins, M.; Barros da Silva, E.A.; Lima Netto, S. Variational autoencoder. In Variational Methods for Machine Learning with Applications to Deep Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 111–149. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Dietterich, T.G. Ensemble methods in machine learning. In Proceedings of the International Workshop on Multiple Classifier Systems, Berlin/Heidelberg, Germany, 20–23 June 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar]
- Ye, Y.; Ji, S. A Hybrid Generative and Discriminative PointNet on Unordered Point Sets. arXiv 2024, arXiv:2404.12925. [Google Scholar]
- Garcia Satorras, V.; Akata, Z.; Welling, M. Combining generative and discriminative models for hybrid inference. Adv. Neural Inf. Process. Syst. 2019, 32, 13820–13830. [Google Scholar]
- Kou, G.; Chen, H.; Hefni, M.A. Improved hybrid resampling and ensemble model for imbalance learning and credit evaluation. J. Manag. Sci. Eng. 2022, 7, 511–529. [Google Scholar] [CrossRef]
- Roelofs, R. Measuring Generalization and Overfitting in Machine Learning; University of California: Berkeley, CA, USA, 2019. [Google Scholar]
- Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef]
- Kobler, E.; Effland, A.; Kunisch, K.; Pock, T. Total deep variation: A stable regularization method for inverse problems. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 9163–9180. [Google Scholar] [CrossRef] [PubMed]
- Baiju, P.; Antony, S.L.; George, S.N. An intelligent framework for transmission map estimation in image dehazing using total variation regularized low-rank approximation. Vis. Comput. 2022, 38, 2357–2372. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Liu, Q.; Khan, R.; Yang, J.; Adeli, E.; Yang, Y. Depth map artefacts reduction: A review. IET Image Process. 2020, 14, 2630–2644. [Google Scholar] [CrossRef]
- Aotani, T.; Kobayashi, T.; Sugimoto, K. Meta-optimization of bias-variance trade-off in stochastic model learning. IEEE Access 2021, 9, 148783–148799. [Google Scholar] [CrossRef]
- Pourtaheri, Z.K.; Zahiri, S.H. Ensemble classifiers with improved overfitting. In Proceedings of the 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), Bam, Iran, 9–11 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 93–97. [Google Scholar]
- Abimannan, S.; El-Alfy, E.S.M.; Chang, Y.S.; Hussain, S.; Shukla, S.; Satheesh, D. Ensemble multifeatured deep learning models and applications: A survey. IEEE Access 2023, 11, 107194–107217. [Google Scholar] [CrossRef]
- Bernardo, J.; Bayarri, M.; Berger, J.; Dawid, A.; Heckerman, D.; Smith, A.; West, M. Generative or discriminative? getting the best of both worlds. Bayesian Stat. 2007, 8, 3–24. [Google Scholar]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Koch, M.; Rosselló, J.M.; Lechner, C.; Lauterborn, W.; Eisener, J.; Mettin, R. Theory-assisted optical ray tracing to extract cavitation-bubble shapes from experiment. Exp. Fluids 2021, 62, 1–19. [Google Scholar] [CrossRef]
- Kiuchi, S.; Koizumi, N. Simulating the appearance of mid-air imaging with micro-mirror array plates. Comput. Graph. 2021, 96, 14–23. [Google Scholar] [CrossRef]
- Villa, J.; Mcmahon, J.; Nesnas, I. Image Rendering and Terrain Generation of Planetary Surfaces Using Source-Available Tools. In Proceedings of the 46th Annual AAS Guidance, Navigation & Control Conference, Breckenridge, CO, USA; 2023; pp. 1–24. [Google Scholar]
- Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. Adv. Neural Inf. Process. Syst. 2014, 27, 2366–2374. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Yee-King, M. Latent spaces: A creative approach. In The Language of Creative AI: Practices, Aesthetics and Structures; Springer: Berlin/Heidelberg, Germany, 2022; pp. 137–154. [Google Scholar]
- Gelada, C.; Kumar, S.; Buckman, J.; Nachum, O.; Bellemare, M.G. Deepmdp: Learning continuous latent space models for representation learning. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 2170–2179. [Google Scholar]
- Fries, W.D.; He, X.; Choi, Y. Lasdi: Parametric latent space dynamics identification. Comput. Methods Appl. Mech. Eng. 2022, 399, 115436. [Google Scholar] [CrossRef]
Model | MAE | RMSE | LogError | Inference Time (ms) |
---|---|---|---|---|
VUDNet (On Deformation) | 0.0443 | 0.0600 | 0.0122 | 19 |
VUDNet (On Geometric) | 0.0168 | 0.0218 | 0.0038 | 19 |
VUDNet (General) | 0.0355 | 0.0470 | 0.0090 | 19 |
DYNet++ * (General) | 0.1607 | 0.1987 | 0.0790 | 26 |
D-UNet ** (General) | 0.2052 | 0.2245 | 0.0451 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepanj, M.H.; Moradi, S.; Nazemi, A.; Preston, C.; Lee, A.M.D.; Fieguth, P. From Single Shot to Structure: End-to-End Network-Based Deflectometry for Specular Free-Form Surface Reconstruction. Appl. Sci. 2024, 14, 10824. https://doi.org/10.3390/app142310824
Sepanj MH, Moradi S, Nazemi A, Preston C, Lee AMD, Fieguth P. From Single Shot to Structure: End-to-End Network-Based Deflectometry for Specular Free-Form Surface Reconstruction. Applied Sciences. 2024; 14(23):10824. https://doi.org/10.3390/app142310824
Chicago/Turabian StyleSepanj, M.Hadi, Saed Moradi, Amir Nazemi, Claire Preston, Anthony M. D. Lee, and Paul Fieguth. 2024. "From Single Shot to Structure: End-to-End Network-Based Deflectometry for Specular Free-Form Surface Reconstruction" Applied Sciences 14, no. 23: 10824. https://doi.org/10.3390/app142310824
APA StyleSepanj, M. H., Moradi, S., Nazemi, A., Preston, C., Lee, A. M. D., & Fieguth, P. (2024). From Single Shot to Structure: End-to-End Network-Based Deflectometry for Specular Free-Form Surface Reconstruction. Applied Sciences, 14(23), 10824. https://doi.org/10.3390/app142310824