Predicting Crash-Related Incident Clearance Time on Louisiana’s Rural Interstate Using Ensemble Tree-Based Learning Methods
Abstract
:1. Introduction
- Developing ML models, namely CatBoost, XGBoost, and LightGBM, to predict crash-related ICT.
- Comparing the performance of these developed ML models in terms of prediction accuracy.
- Analyzing the influence of significant factors impacting ICT using SHAP analysis.
2. Literature Review
2.1. Prediction of Incident Duration with ML Models
2.2. Factors Influencing Incident Duration
3. Data Description and Preprocessing
3.1. Data Source
3.2. Data Preprocessing
3.3. Feature Selection
4. Methodology
4.1. Machine Learning Algorithms
4.1.1. XGBoost
4.1.2. CatBoost
4.1.3. LightGBM
4.2. Model Development
- XGBoost: subsample = 0.8, reg_lambda = 2.5, reg_alpha = 0.1, n_estimators = 300, max_depth = 9, learning_rate = 0.1, gamma = 0, colsample_bytree = 1.0.
- CatBoost: iterations = 100, learning_rate = 0.1, depth = 6, l2_leaf_reg = 3, border_count = 32, ctr_border_count = 50.
- LightGBM: num_leaves = 31, n_estimators = 200, max_depth = 20, learning_rate = 0.1, lambda_l2 = 0, lambda_l1 = 0.5, feature_fraction = 0.8, boosting_type = gbdt.
4.3. SHAP Analysis
4.4. Model Evaluation
5. Results and Discussion
5.1. Machine Learning Model Results
5.2. SHAP Results
6. Conclusions
- It is recommended to predict different phases of incident duration, such as detection and response time, to better understand the factors responsible for prolonged ICT.
- This research study is limited to Louisiana’s rural interstates. Future studies are recommended to include urban interstates and other road types across Louisiana to improve the model’s applicability.
- To improve the model’s accuracy and predictive performance, it is recommended that the model be trained on comprehensive data sets spanning more than 10 years
- It is also recommended that real-time traffic and weather data be used during modeling through the use of installed sensors to improve the model’s prediction accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Alkaabi, A.M.S.; Dissanayake, D.; Bird, R. Analyzing Clearance Time of Urban Traffic Accidents in Abu Dhabi, United Arab Emirates, with Hazard-Based Duration Modeling Method. Transp. Res. Rec. 2011, 2229, 46–54. [Google Scholar] [CrossRef]
- National Traffic Incident Management Coalition (NTIMC). Benefits of Traffic Incident Management; NTIMC: Washington, DC, USA, 2006. [Google Scholar]
- Wang, S.; Li, R.; Guo, M. Application of Nonparametric Regression in Predicting Traffic Incident Duration. Transport 2018, 33, 22–31. [Google Scholar] [CrossRef]
- Haule, H.J.; Sando, T.; Lentz, R.; Chuan, C.-H.; Alluri, P. Evaluating the Impact and Clearance Duration of Freeway Incidents. Int. J. Transp. Sci. Technol. 2019, 8, 13–24. [Google Scholar] [CrossRef]
- Lee, Y.; Wei, C. A Computerized Feature Selection Method Using Genetic Algorithms to Forecast Freeway Accident Duration Times. Comput.-Aided Civil. Infrastruct. Eng. 2010, 25, 132–148. [Google Scholar] [CrossRef]
- Madanat, S.; Feroze, A. Prediction Models for Incident Clearance Time for Borman Expressway (Vol. 1; Vol. 2: 96/11); Joint Highway Research Project, Indiana Department of Transportation and Purdue University: West Lafayette, India, 1997. [Google Scholar]
- Zhang, H.; Khattak, A.J. Analysis of Cascading Incident Event Durations on Urban Freeways. Transp. Res. Rec. 2010, 2178, 30–39. [Google Scholar] [CrossRef]
- Khattak, A.J.; Wang, X.; Zhang, H. Spatial Analysis and Modeling of Traffic Incidents for Proactive Incident Management and Strategic Planning. Transp. Res. Rec. 2010, 2178, 128–137. [Google Scholar] [CrossRef]
- Special Report 209: Highway Capacity Manual, 3rd ed.; TRB, National Research Council: Washington, DC, USA, 1994.
- Lee, J.; Abdel-Aty, M.; Cai, Q.; Wang, L. Analysis of Fatal Traffic Crash-Reporting and Reporting-Arrival Time Intervals of Emergency Medical Services. Transp. Res. Rec. 2018, 2672, 61–71. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, W. Prediction in Traffic Accident Duration Based on Heterogeneous Ensemble Learning. Appl. Artif. Intell. 2022, 36, 2018643. [Google Scholar] [CrossRef]
- Khattak, A.J.; Liu, J.; Wali, B.; Li, X.; Ng, M. Modeling Traffic Incident Duration Using Quantile Regression. Transp. Res. Rec. 2016, 2554, 139–148. [Google Scholar] [CrossRef]
- Valenti, G.; Lelli, M.; Cucina, D. A Comparative Study of Models for the Incident Duration Prediction. Eur. Transp. Res. Rev. 2010, 2, 103–111. [Google Scholar] [CrossRef]
- Cong, H.; Chen, C.; Lin, P.-S.; Zhang, G.; Milton, J.; Zhi, Y. Traffic Incident Duration Estimation Based on a Dual-Learning Bayesian Network Model. Transp. Res. Rec. 2018, 2672, 196–209. [Google Scholar] [CrossRef]
- Zhan, C.; Gan, A.; Hadi, M. Prediction of Lane Clearance Time of Freeway Incidents Using the M5P Tree Algorithm. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1549–1557. [Google Scholar] [CrossRef]
- Wei, C.-H.; Lee, Y. Sequential Forecast of Incident Duration Using Artificial Neural Network Models. Accid. Anal. Prev. 2007, 39, 944–954. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, L.; Han, C.; Yin, W.; Zhang, Y.; Zou, Y.; Huang, H. Statistical and Machine-Learning Methods for Clearance Time Prediction of Road Incidents: A Methodology Review. Anal. Methods Accid. Res. 2020, 27, 100123. [Google Scholar] [CrossRef]
- Shang, Q.; Tan, D.; Gao, S.; Feng, L. A Hybrid Method for Traffic Incident Duration Prediction Using BOA-Optimized Random Forest Combined with Neighborhood Components Analysis. J. Adv. Transp. 2019, 2019, 4202735. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, J.; Fu, T.; Wang, J.; Zhang, J.; Shangguan, Q. Dynamic Prediction of Traffic Incident Duration on Urban Expressways: A Deep Learning Approach Based on LSTM and MLP. J. Intell. Connect. Veh. 2021, 4, 80–91. [Google Scholar] [CrossRef]
- Shang, Q.; Xie, T.; Yu, Y. Prediction of Duration of Traffic Incidents by Hybrid Deep Learning Based on Multi-Source Incomplete Data. Int. J. Environ. Res. Public Health 2022, 19, 10903. [Google Scholar] [CrossRef]
- Chen, J.; Tao, W. Traffic Accident Duration Prediction Using Text Mining and Ensemble Learning on Expressways. Sci. Rep. 2022, 12, 21478. [Google Scholar] [CrossRef]
- He, Q.; Kamarianakis, Y.; Jintanakul, K.; Wynter, L. Incident Duration Prediction with Hybrid Tree-Based Quantile Regression. In Advances in Dynamic Network Modeling in Complex Transportation Systems; Springer: New York, NY, USA, 2013; pp. 287–305. [Google Scholar]
- Ma, X.; Ding, C.; Luan, S.; Wang, Y.; Wang, Y. Prioritizing Influential Factors for Freeway Incident Clearance Time Prediction Using the Gradient Boosting Decision Trees Method. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2303–2310. [Google Scholar] [CrossRef]
- Grigorev, A.; Mihaita, A.-S.; Lee, S.; Chen, F. Incident Duration Prediction Using a Bi-Level Machine Learning Framework with Outlier Removal and Intra–Extra Joint Optimisation. Transp. Res. Part C Emerg. Technol. 2022, 141, 103721. [Google Scholar] [CrossRef]
- Li, R.; Pereira, F.C.; Ben-Akiva, M.E. Overview of Traffic Incident Duration Analysis and Prediction. Eur. Transp. Res. Rev. 2018, 10, 22. [Google Scholar] [CrossRef]
- Rahmat-Ullah, Z.; Alsmadi, S.; Hamad, K. Classifying and Forecasting Traffic Incident Duration Using Various Machine Learning Techniques. In Proceedings of the 2021 14th International Conference on Developments in eSystems Engineering (DeSE), Sharjah, United Arab Emirates, 7–10 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 388–393. [Google Scholar]
- Hamad, K.; Khalil, M.A.; Alozi, A.R. Predicting Freeway Incident Duration Using Machine Learning. Int. J. Intell. Transp. Syst. Res. 2020, 18, 367–380. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Y.T.; Yaoz, J.B.; Wang, J.Y. A Comparison of the Performance of Ann and Svm for the Prediction of Traffic Accident Duration. Neural Netw. World 2016, 26, 271–287. [Google Scholar] [CrossRef]
- Lee, Y.; Wei, C.-H.; Chao, K.-C. Non-Parametric Machine Learning Methods for Evaluating the Effects of Traffic Accident Duration on Freeways. Arch. Transp. 2017, 43, 91–104. [Google Scholar] [CrossRef]
- Kidando, E.; Mihayo, M.; Salum, J.H.; Kutela, B.; Kitali, A.E.; Alluri, P.; Sando, T. Prediction of Traffic Incident Clearance Duration Using Neural Network for Multimodal Data Distribution. J. Transp. Eng. A Syst. 2024, 150, 04024052. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, MA, USA, 2022; ISBN 1098122461. [Google Scholar]
- Hamad, K.; Obaid, L.; Nassif, A.B.; Abu Dabous, S.; Al-Ruzouq, R.; Zeiada, W. Comprehensive Evaluation of Multiple Machine Learning Classifiers for Predicting Freeway Incident Duration. Innov. Infrastruct. Solut. 2023, 8, 177. [Google Scholar] [CrossRef]
- Obaid, L.; Hamad, K.; Khalil, M.A.; Nassif, A.B. Effect of Feature Optimization on Performance of Machine Learning Models for Predicting Traffic Incident Duration. Eng. Appl. Artif. Intell. 2024, 131, 107845. [Google Scholar] [CrossRef]
- Zhu, S. Comparative Study of Statistical and Machine Learning Methods for Streetcar Incident Duration Analysis. Int. J. Crashworthiness 2024, 29, 16–21. [Google Scholar] [CrossRef]
- Jia, X.L.; Li, S.Q.; Yang, H.Z.; Chen, X.P. Prediction of the Duration of Freeway Traffic Incidents Based on an ATT-LSTM Model. J. Transp. Informat. Safet. 2022, 40, 61–69. [Google Scholar]
- Nam, D.; Mannering, F. An Exploratory Hazard-Based Analysis of Highway Incident Duration. Transp. Res. Part A Policy Pract. 2000, 34, 85–102. [Google Scholar] [CrossRef]
- Ding, C.; Ma, X.; Wang, Y.; Wang, Y. Exploring the Influential Factors in Incident Clearance Time: Disentangling Causation from Self-Selection Bias. Accid. Anal. Prev. 2015, 85, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, F.; Chen, T.; Sze, N.N. Incorporating Real-Time Weather Conditions into Analyzing Clearance Time of Freeway Accidents: A Grouped Random Parameters Hazard-Based Duration Model with Time-Varying Covariates. Anal. Methods Accid. Res. 2023, 38, 100267. [Google Scholar] [CrossRef]
- Hou, L.; Lao, Y.; Wang, Y.; Zhang, Z.; Zhang, Y.; Li, Z. Time-Varying Effects of Influential Factors on Incident Clearance Time Using a Non-Proportional Hazard-Based Model. Transp. Res. Part A Policy Pract. 2014, 63, 12–24. [Google Scholar] [CrossRef]
- Adeel, M.; Khattak, A.J.; Mishra, S.; Thapa, D. Enhancing Work Zone Crash Severity Analysis: The Role of Synthetic Minority Oversampling Technique in Balancing Minority Categories. Accid. Anal. Prev. 2024, 208, 107794. [Google Scholar] [CrossRef]
- Islam, N.; Adanu, E.K.; Hainen, A.M.; Burdette, S.; Smith, R.; Jones, S. A Comparative Analysis of Freeway Crash Incident Clearance Time Using Random Parameter and Latent Class Hazard-Based Duration Model. Accid. Anal. Prev. 2021, 160, 106303. [Google Scholar] [CrossRef]
- Tirtha, S.D.; Yasmin, S.; Eluru, N. Modeling of Incident Type and Incident Duration Using Data from Multiple Years. Anal. Methods Accid. Res. 2020, 28, 100132. [Google Scholar] [CrossRef]
- Garib, A.; Radwan, A.E.; Al-Deek, H. Estimating Magnitude and Duration of Incident Delays. J. Transp. Eng. 1997, 123, 459–466. [Google Scholar] [CrossRef]
- Junhua, W.; Haozhe, C.; Shi, Q. Estimating Freeway Incident Duration Using Accelerated Failure Time Modeling. Saf. Sci. 2013, 54, 43–50. [Google Scholar] [CrossRef]
- Zou, Y.; Tang, J.; Wu, L.; Henrickson, K.; Wang, Y. Quantile Analysis of Factors Influencing the Time Taken to Clear Road Traffic Incidents. In Proceedings of the Institution of Civil Engineers-Transport; Thomas Telford Ltd.: London, UK, 2017; Volume 170, pp. 296–304. [Google Scholar]
- Chung, Y. Development of an Accident Duration Prediction Model on the Korean Freeway Systems. Accid. Anal. Prev. 2010, 42, 282–289. [Google Scholar] [CrossRef]
- Huang, H.; Li, C.; Zeng, Q. Crash Protectiveness to Occupant Injury and Vehicle Damage: An Investigation on Major Car Brands. Accid. Anal. Prev. 2016, 86, 129–136. [Google Scholar] [CrossRef]
- Zeng, Q.; Wen, H.; Huang, H. The Interactive Effect on Injury Severity of Driver-Vehicle Units in Two-Vehicle Crashes. J. Saf. Res. 2016, 59, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-T.; Fazio, J. Influential Factors in Freeway Crash Response and Clearance Times by Emergency Management Services in Peak Periods. Traffic Inj. Prev. 2005, 6, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Chimba, D.; Kutela, B.; Ogletree, G.; Horne, F.; Tugwell, M. Impact of Abandoned and Disabled Vehicles on Freeway Incident Duration. J. Transp. Eng. 2014, 140, 04013013. [Google Scholar] [CrossRef]
- Golob, T.F.; Recker, W.W.; Leonard, J.D. An Analysis of the Severity and Incident Duration of Truck-Involved Freeway Accidents. Accid. Anal. Prev. 1987, 19, 375–395. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Haghani, A.; Zhang, X. Interpretation of Bayesian Neural Networks for Predicting the Duration of Detected Incidents. J. Intell. Transp. Syst. 2016, 20, 385–400. [Google Scholar] [CrossRef]
- Teng, C.-M. Correcting Noisy Data. ICML 1999, 99, 239–248. [Google Scholar]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Ozbay, K.; Noyan, N. Estimation of Incident Clearance Times Using Bayesian Networks Approach. Accid. Anal. Prev. 2006, 38, 542–555. [Google Scholar] [CrossRef]
- Rodríguez, P.; Bautista, M.A.; Gonzalez, J.; Escalera, S. Beyond One-Hot Encoding: Lower Dimensional Target Embedding. Image Vis. Comput. 2018, 75, 21–31. [Google Scholar] [CrossRef]
- Thabtah, F.; Hammoud, S.; Kamalov, F.; Gonsalves, A. Data Imbalance in Classification: Experimental Evaluation. Inf. Sci. 2020, 513, 429–441. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Sun, L.; Lin, Z.; Li, W.; Xiang, Y. Freeway Incident Detection Based on Set Theory and Short-Range Communication. Transp. Lett. 2019, 11, 558–569. [Google Scholar] [CrossRef]
- Frénay, B.; Doquire, G.; Verleysen, M. Is Mutual Information Adequate for Feature Selection in Regression? Neural Netw. 2013, 48, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Holmes, G.; Donkin, A.; Witten, I.H. Weka: A Machine Learning Workbench. In Proceedings of the ANZIIS’94-Australian New Zealnd Intelligent Information Systems Conference, Brisbane, QLD, Australia, 29 November—2 December 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 357–361. [Google Scholar]
- Koprinska, I. Feature Selection for Brain-Computer Interfaces. In Proceedings of the New Frontiers in Applied Data Mining: PAKDD 2009 International Workshops, Bangkok, Thailand, 27–30 April 2009; Revised Selected Papers 13. Springer: Berlin/Heidelberg, Germany, 2010; pp. 106–117. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Subasi, A. Practical Machine Learning for Data Analysis Using Python; Academic Press: Cambridge, MA, USA, 2020; ISBN 0128213809. [Google Scholar]
- Raschka, S.; Liu, Y.H.; Mirjalili, V.; Dzhulgakov, D. Machine Learning with PyTorch and Scikit-Learn: Develop Machine Learning and Deep Learning Models with Python; Packt Publishing Ltd.: Birmingham, UK, 2022; ISBN 1801816387. [Google Scholar]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017; ISBN 1785884514. [Google Scholar]
- Das, A.; Khan, M.N.; Ahmed, M.M. Detecting Lane Change Maneuvers Using SHRP2 Naturalistic Driving Data: A Comparative Study Machine Learning Techniques. Accid. Anal. Prev. 2020, 142, 105578. [Google Scholar] [CrossRef] [PubMed]
- Mousa, S.R.; Bakhit, P.R.; Osman, O.A.; Ishak, S. A Comparative Analysis of Tree-Based Ensemble Methods for Detecting Imminent Lane Change Maneuvers in Connected Vehicle Environments. Transp. Res. Rec. 2018, 2672, 268–279. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. Adv. Neural Inf. Process Syst. 2018, 31, 6639–6649. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process Syst. 2017, 30, 3149–3157. [Google Scholar]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A Comparative Analysis of Gradient Boosting Algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms-a Review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Vincent, A.M.; Jidesh, P. An Improved Hyperparameter Optimization Framework for AutoML Systems Using Evolutionary Algorithms. Sci. Rep. 2023, 13, 4737. [Google Scholar] [CrossRef]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-Validation Pitfalls When Selecting and Assessing Regression and Classification Models. J. Cheminform. 2014, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process Syst. 2017, 30, 4765–4774. [Google Scholar]
- Štrumbelj, E.; Kononenko, I. Explaining Prediction Models and Individual Predictions with Feature Contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An Improved Method to Construct Basic Probability Assignment Based on the Confusion Matrix for Classification Problem. Inf. Sci. 2016, 340, 250–261. [Google Scholar] [CrossRef]
- Silva, V.C.; Dias, A.S.; Greve, J.M.D.; Davis, C.L.; Soares, A.L.d.S.; Brech, G.C.; Ayama, S.; Jacob-Filho, W.; Busse, A.L.; de Biase, M.E.M. Crash Risk Predictors in Older Drivers: A Cross-Sectional Study Based on a Driving Simulator and Machine Learning Algorithms. Int. J. Environ. Res. Public Health 2023, 20, 4212. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Smith, J.; Williams, B.; Clouser, J.; Anastasio, I.; Haleem, K. Comparative Analysis of Aggressive-Driving and Distracted-Driving Crashes Involving Commercial Motor Vehicles in Kentucky. In Proceedings of the International Conference on Transportation and Development 2021, Virtual, 8–10 June 2021; pp. 272–284. [Google Scholar]
- Kusano, K.D.; Gabler, H.C. Characterization of Opposite-Direction Road Departure Crashes in the United States. Transp. Res. Rec. 2013, 2377, 14–20. [Google Scholar] [CrossRef]
- Karl, J.B.; Nyce, C.M.; Powell, L.; Zhuang, B. How Risky Is Distracted Driving? J. Risk Uncertain. 2023, 66, 279–312. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moomen, M.; Khan, W.A.; Codjoe, J. An Analysis of the Impact of Injury Severity on Incident Clearance Time on Urban Interstates Using a Bivariate Random-Parameter Probit Model. Stats 2024, 7, 863–874. [Google Scholar] [CrossRef]
Reference | Data Used | Significant Features | Modeling Technique |
---|---|---|---|
Haule et al., 2019 [5] | 2014–2016 | Percentage of lane closures, nighttime, weekends, off-peak hours, and an increasing number of responders | Hazard-based duration models |
Nam and Mannering 2000 [37] | 1994 and 1995 | Peak hours, nighttime, Friday, Sunday, rain, fog, fatality, single-occupancy vehicles, and pickup trucks | Hazard-based duration models |
Park et al., 2016 [53] | 2010 to 2011 | Higher-occupancy vehicles, snow, rain, heavy vehicles, shoulder blockage, fatality, injury, property damage, vehicle fire, and disabled vehicles | Bayesian neural networks |
Ding et al., 2015 [38] | 2009 | Travel lanes blocked, total closure, injury involved, fire involved, heavy truck involved, and traffic control | Binary probit model and switching regression model |
Khattak et al., 2016 [13] | 2013–2015 | Injury, day of week, time, roadway geometry | Quantile regression |
Cong et al., 2018 [15] | 2008 to 2010 | Incident type, number of vehicles, trucks, injuries, fatalities | Bayesian network |
Variable Category | Category (Binary) | Description | Code | Frequency | Mean | Std. Dev |
---|---|---|---|---|---|---|
Response characteristics | Response to crash | Short | - | 7323 | 0.65 | 0.48 |
Medium | - | 1508 | 0.13 | 0.34 | ||
Intermediate | - | 1061 | 0.09 | 0.29 | ||
Long | - | 1437 | 0.13 | 0.33 | ||
Temporal factors | Time of day crash occurred | AM peak | AM_Peak | 914 | 0.08 | 0.27 |
PM peak | PM_Peak | 1519 | 0.13 | 0.34 | ||
Night | Ngt | 3444 | 0.3 | 0.46 | ||
Day of week | Monday to Thursday | Mon_Thu | 6079 | 0.54 | 0.5 | |
Friday to Sunday | Fri_Sun | 5250 | 0.46 | 0.5 | ||
Season | Spring (March, April, May) | Spr | 2745 | 0.24 | 0.43 | |
Summer (June, July, August) | Sum | 3179 | 0.28 | 0.45 | ||
Fall (September, October, November) | Fall | 2837 | 0.25 | 0.44 | ||
Winter (December, January, February) | Wnt | 2533 | 0.22 | 0.42 | ||
Crash characteristics | Driver gender | Male | Male | 7412 | 0.65 | 0.48 |
Driver age | Young age (≤25 years) | Y_AGE | 2516 | 0.22 | 0.42 | |
Middle age (between 25 and 65 years) | M_AGE | 7379 | 0.65 | 0.48 | ||
Old age (>65 years) | O_AGE | 1434 | 0.13 | 0.33 | ||
Crash severity | Injury crash | Inj | 2638 | 0.23 | 0.42 | |
Fatality | Fatality | 144 | 0.01 | 0.11 | ||
Alcohol or drugs involved (binary) | Alcohol/drugs | Alc_Drugs | 105 | 0.01 | 0.1 | |
Alcohol | Alc | 399 | 0.04 | 0.18 | ||
Drugs | Drugs | 86 | 0.01 | 0.09 | ||
Crash location | Residential | Res | 168 | 0.01 | 0.12 | |
Business | Business | 339 | 0.03 | 0.17 | ||
Crash event | Road departure | RdwyDprt | 5290 | 0.47 | 0.5 | |
Manner of collision (categorical) | Head-on | HeadOn | 64 | 0.01 | 0.07 | |
Rear-ended | RearEnd | 3591 | 0.32 | 0.47 | ||
Sideswipe | SdSwp | 2093 | 0.18 | 0.39 | ||
Roadway condition | Water on roadway | Rd_WtRdwy | 329 | 0.03 | 0.17 | |
Animal on roadway | Rd_AnRdwy | 264 | 0.02 | 0.15 | ||
Object on roadway | Rd_objRdwy_Others | 784 | 0.07 | 0.25 | ||
Driver’s distraction | Cellphone | CellPh | 123 | 0.01 | 0.1 | |
Inside the vehicle | InVeh | 331 | 0.03 | 0.17 | ||
Outside the vehicle | OutVeh | 293 | 0.03 | 0.16 | ||
Vehicle type | Car | Car | 4067 | 0.41 | 0.49 | |
Large truck | Large_Truck | 1340 | 0.12 | 0.32 | ||
Environmental factors | Lighting conditions | Dark | Dark | 3843 | 0.34 | 0.47 |
Dusk/dawn | Dusk_Dawn | 347 | 0.03 | 0.17 | ||
Weather condition | Rain | Rain | 2578 | 0.23 | 0.42 | |
Fog/snow | Fog_Snow | 164 | 0.01 | 0.12 | ||
Geometric/traffic factors | Speed limit | Speed limit greater than 60 mph | PstSpd_greater_than_60 mph | 9339 | 0.82 | 0.38 |
Model | Classes | TP | FP | FN | TN | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|---|
XGBoost | Short | 2476 | 1300 | 430 | 6331 | 0.8354 | 0.6557 | 0.8520 | 0.7407 |
Medium | 1944 | 581 | 980 | 7032 | 0.8508 | 0.7702 | 0.6648 | 0.7134 | |
Intermediate | 2223 | 582 | 760 | 6972 | 0.8715 | 0.7926 | 0.7453 | 0.7683 | |
Long | 2082 | 529 | 822 | 7104 | 0.8713 | 0.7970 | 0.7172 | 0.7551 | |
CatBoost | Short | 2477 | 1339 | 429 | 6472 | 0.8347 | 0.6492 | 0.8524 | 0.7372 |
Medium | 1789 | 648 | 1135 | 7145 | 0.8323 | 0.7342 | 0.6120 | 0.6674 | |
Intermediate | 2154 | 730 | 829 | 7004 | 0.8537 | 0.7467 | 0.7221 | 0.7342 | |
Long | 1989 | 591 | 915 | 7222 | 0.8575 | 0.7709 | 0.6848 | 0.7255 | |
LightGBM | Short | 2653 | 1485 | 253 | 7374 | 0.9317 | 0.6412 | 0.9130 | 0.7513 |
Medium | 1668 | 672 | 1256 | 7169 | 0.8221 | 0.7128 | 0.5707 | 0.6342 | |
Intermediate | 2047 | 788 | 936 | 6994 | 0.8396 | 0.7221 | 0.6865 | 0.7038 | |
Long | 1855 | 549 | 1049 | 8312 | 0.9461 | 0.7718 | 0.6389 | 0.6993 |
Models | Average Accuracy | Macro Average Recall | Macro Average Precision | Macro Average F1-Score |
---|---|---|---|---|
XGBoost | 0.8573 | 0.7448 | 0.7539 | 0.7444 |
CatBoost | 0.8446 | 0.7178 | 0.7252 | 0.7161 |
LightGBM | 0.8849 | 0.7023 | 0.7120 | 0.6972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.A.; Moomen, M.; Rahman, M.A.; Terkper, K.A.; Codjoe, J.; Gopu, V. Predicting Crash-Related Incident Clearance Time on Louisiana’s Rural Interstate Using Ensemble Tree-Based Learning Methods. Appl. Sci. 2024, 14, 10964. https://doi.org/10.3390/app142310964
Khan WA, Moomen M, Rahman MA, Terkper KA, Codjoe J, Gopu V. Predicting Crash-Related Incident Clearance Time on Louisiana’s Rural Interstate Using Ensemble Tree-Based Learning Methods. Applied Sciences. 2024; 14(23):10964. https://doi.org/10.3390/app142310964
Chicago/Turabian StyleKhan, Waseem Akhtar, Milhan Moomen, M. Ashifur Rahman, Kelvin Asamoah Terkper, Julius Codjoe, and Vijaya Gopu. 2024. "Predicting Crash-Related Incident Clearance Time on Louisiana’s Rural Interstate Using Ensemble Tree-Based Learning Methods" Applied Sciences 14, no. 23: 10964. https://doi.org/10.3390/app142310964
APA StyleKhan, W. A., Moomen, M., Rahman, M. A., Terkper, K. A., Codjoe, J., & Gopu, V. (2024). Predicting Crash-Related Incident Clearance Time on Louisiana’s Rural Interstate Using Ensemble Tree-Based Learning Methods. Applied Sciences, 14(23), 10964. https://doi.org/10.3390/app142310964