Investigation of Oil Extracted from Roasted and Unroasted Oats with Use of Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material, Roasting Conditions, and Extraction of Oil from Oats
2.2. GC Analysis
2.3. Oxidative Stability by Pressure Differential Scanning Calorimetry (PDSC) Method
2.4. Calorimetric Bomb Method
2.5. Acid Value Determination
2.6. Peroxide Value Determination
2.7. IR Spectra Registration
2.8. Chemometrics
2.9. Statistical Procedures
3. Results and Discussion
3.1. Calorimetry
3.2. Chromatography
3.3. Titration Methods
3.4. IR Spectral Data
3.5. Statistical Modeling
3.5.1. Discriminant Model. MODEL 1
3.5.2. Reference Models
MODEL 2: Time of Roasting and Spectral Data
MODEL 3: Induction Time and Spectral Data
MODEL 4: Acid Value and Spectral Data
MODEL 5 Peroxide Value and Spectral Data
4. Conclusions
- Discrimination of oil extracted from roasted and fresh oat grains;
- Determination of acid value;
- Determination of peroxide value;
- Time of thermal processing;
- Oxidation induction time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tosh, S.M.; Bordenave, N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr. Rev. 2020, 78 (Suppl. S1), 13–20. [Google Scholar] [CrossRef] [PubMed]
- Paudel, D.; Dhungana, B.; Caffe, M.; Krishnan, P. A review of health-beneficial properties of oats. Foods 2021, 10, 2591. [Google Scholar] [CrossRef] [PubMed]
- Gibbs Russel, G.E.; Watson, L.; Koekemoer, M.; Smook, L.; Barker, N.P.; Anderson, H.M.; Dallwitz, M.J. Grasses of southern Africa. Grasses S. Afr. 1955, 58, 381–382. [Google Scholar]
- Winfield, K.; Hall, M.; Paynter, B. Milling Oat and Feed Oat Quality-What Are the Differences? Department of Primary Industries and Regional Development: Perth, Australia, 2007. [Google Scholar]
- Grimberg, Å. Preferred carbon precursors for lipid labelling in the heterotrophic endosperm of developing oat (Avena sativa L.) grains. Plant Physiol. Biochem. 2014, 83, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Robards, K.; Glennie-Holmes, M.; Helliwell, S. Oat lipids. JAOCS 1999, 76, 159–169. [Google Scholar] [CrossRef]
- Bhattacharya, S. Roasting and toasting operations in food: Process engineering and applications. In Conventional and Advanced Food Processing Technologies, 1st ed.; Bhattacharya, S., Ed.; John Wiley & Sons, Ltd: West Sussex, UK, 2014; pp. 221–248. [Google Scholar]
- Sruthi, N.U.; Premjit, Y.; Pandiselvam, R.; Kothakota, A.; Ramesh, S.V. An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chem. 2021, 348, 129088. [Google Scholar] [CrossRef]
- Babiker, E.E.; Uslu, N.; Al Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Özcan, M.M.; Almusallam, I.A. Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds. LWT 2021, 139, 110537. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Lu, X.; Sun, H.; Wang, F. Effect of oilseed roasting on the quality, flavor and safety of oil: A comprehensive review. Food Res. Int. 2021, 150, 110791. [Google Scholar] [CrossRef]
- Idrus, N.F.M.; Zzaman, W.; Yang, T.A.; Easa, A.M.; Sharifudin, M.S.; Noorakmar, B.W.; Jahurul, M.H.A. Effect of superheated-steam roasting on physicochemical properties of peanut (Arachis hypogea) oil. Food Sci. Biotechnol. 2017, 26, 911–920. [Google Scholar] [CrossRef]
- Bryś, A.; Bryś, J.; Mellado, Á.F.; Głowacki, S.; Tulej, W.; Ostrowska-Ligęza, E.; Koczoń, P. Characterization of oil from roasted hemp seeds using the PDSC and FTIR techniques. J. Therm. Anal. Calorim. 2019, 138, 2781–2786. [Google Scholar] [CrossRef]
- Elouafy, Y.; El Idrissi, Z.L.; El Yadini, A.; Harhar, H.; Alshahrani, M.M.; Al Awadh, A.A.; Tabyaoui, M. Variations in antioxidant capacity, oxidative stability, and physicochemical quality parameters of walnut (Juglans regia) oil with roasting and accelerated storage conditions. Molecules 2022, 27, 7693. [Google Scholar] [CrossRef] [PubMed]
- Tenyang, N.; Ponka, R.; Tiencheu, B.; Djikeng, F.T.; Azmeera, T.; Karuna, M.S.; Womeni, H.M. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in Far-North Region of Cameroon. Food Chem. 2017, 221, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Belcadi-Haloui, R.; Zekhnini, A.; El-Alem, Y.; Hatimi, A. Effects of roasting temperature and time on the chemical composition of argan oil. Int. J. Food Sci. 2018, 1, 7683041. [Google Scholar] [CrossRef] [PubMed]
- Mariod, A.A.; Ahmed, S.Y.; Abdelwahab, S.I.; Cheng, S.F.; Eltom, A.M.; Yagoub, S.O.; Gouk, S.W. Effects of roasting and boiling on the chemical composition, amino acids and oil stability of safflower seeds. Int. J. Food Sci. Nutr. 2012, 47, 1737–1743. [Google Scholar] [CrossRef]
- Perren, R.; Escher, F.E. Investigations on the hot air roasting of nuts. Manuf. Confect. 1997, 77, 123–127. [Google Scholar]
- Ciemniewska-Żytkiewicz, H.; Bryś, J.; Sujka, K.; Koczoń, P. Assessment of the hazelnuts roasting process by pressure differential scanning calorimetry and MID-FT-IR spectroscopy. Food Anal. Methods 2015, 8, 2465–2473. [Google Scholar] [CrossRef]
- Luna, A.S.; da Silva, A.P.; Ferré, J.; Boqué, R. Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy. Spectrochim. Acta A 2013, 100, 109–114. [Google Scholar] [CrossRef]
- Christy, A.A.; Egeberg, P.K. Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics. Chemom. Intell. Lab. Syst. 2006, 82, 130–136. [Google Scholar] [CrossRef]
- Firestone, D. Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS: Champaign, IL, USA, 1989. [Google Scholar]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Yu, X. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef]
- Gotoh, N.; Wada, S. The importance of peroxide value in assessing food quality and food safety. JAOCS 2006, 83, 473–474. [Google Scholar] [CrossRef]
- Wójcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chem. 2015, 187, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Boselli, E.; Velazco, V.; Caboni, M.F.; Lercker, G. Pressurized liquid extraction of lipids for the determination of oxysterols in egg-containing food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Dolatowska-Żebrowska, K.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Characterization of thermal properties of goat milk fat and goat milk chocolate by using DSC, PDSC and TGA methods. J. Therm. Anal. Calorim. 2019, 138, 2769–2779. [Google Scholar] [CrossRef]
- Bryś, J.; Flores, L.F.V.; Górska, A.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Bryś, A. Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures. J. Therm. Anal. Calorim. 2017, 130, 319–327. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Krygier, K. Comparison of the oxidative stability of linseed (Linum usitatissimum L.) oil by pressure differential scanning calorimetry and Rancimat measurements. J. Food Sci. Technol. 2016, 53, 3986–3995. [Google Scholar] [CrossRef]
- ISO Standards 1928:2009; Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 660:2009; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 3960:2007; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. International Organization for Standardization: Geneva, Switzerland, 2007.
- Kamal-Eldin, A.; Pokorny, J. Lipid oxidation products and methods used for their analysis. In Analysis of Lipid Oxidation; Kamal-Eldin, A., Pokorny, Eds.; AOCS Press: Champaign, IL, USA, 2005. [Google Scholar]
- Valdez, E.; Tabil, L.G.; Mupondwa, E.; Cree, D.; Moazed, H. Microwave torrefaction of oat hull: Effect of temperature and residence time. Energies 2021, 14, 4298. [Google Scholar] [CrossRef]
- Vaidya, B.; Choe, E. Effects of seed roasting on tocopherols, carotenoids, and oxidation in mustard seed oil during heating. JAOCS 2011, 88, 83–90. [Google Scholar] [CrossRef]
Fatty Acid | Unroasted | 160 °C 10 Min | 160 °C 20 Min | 160 °C 30 Min | 160 °C 40 Min | 160 °C 50 Min | 160 °C 60 Min |
---|---|---|---|---|---|---|---|
C14:0 | 0.39 ± 0.06 | 0.28 ± 0.01 | 0.21 ± 0.06 | 0.19 ± 0.02 | 0.36 ± 0.04 | 0.22 ± 0.02 | 0.28 ± 0.02 |
C16:0 | 19.59 ± 1.46 | 18.30 ± 0.99 | 15.42 ± 1.50 | 14.80 ± 0.20 | 19.64 ± 1.32 | 15.59 ± 0.27 | 17.22 ± 1.27 |
C16:1 | 0.25 ± 0.04 | 0.18 ± 0.01 | 0.18 ± 0.01 | 0.14 ± 0.01 | 0.18 ± 0.02 | 0.14 ± 0.01 | 0.16 ± 0.02 |
C18:0 | 2.28 ± 0.02 | 2.19 ± 0.15 | 2.48 ± 0.15 | 2.35 ± 0.01 | 1.66 ± 0.28 | 2.37 ± 0.11 | 2.24 ± 0.12 |
C18:1 n-9 | 37.83 ± 0.73 | 40.11 ± 1.75 | 40.28 ± 0.54 | 40.84 ± 0.07 | 39.02 ± 1.35 | 40.64 ± 0.01 | 40.07 ± 0.70 |
C18:2 n-6 | 37.65 ± 0.66 | 36.93 ± 1.40 | 39.01 ± 0.40 | 39.18 ± 0.38 | 37.54 ± 0.30 | 38.59 ± 0.22 | 37.84 ± 0.04 |
C18:3 n-3 | 1.37 ± 0.03 | 1.32 ± 0.26 | 1.44 ± 0.06 | 1.23 ± 0.021 | 0.90 ± 0.07 | 1.31 ± 0.01 | 1.14 ± 0.21 |
C20:0 | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.12 ± 0.01 | 0.18 ± 0.04 | 0.11 ± 0.01 | 0.12 ± 0.02 | 0.13 ± 0.03 |
C20:1 | 0.61 ± 0.11 | 0.62 ± 0.23 | 0.88 ± 0.40 | 1.11 ± 0.27 | 0.62 ± 0.06 | 1.04 ± 0.06 | 0.93 ± 0.36 |
Name | Type | Spectral Regions Used for Construction | Correlation Coefficient | RMSE | ||
---|---|---|---|---|---|---|
Calibration | Prediction | Calibration | Prediction | |||
MODEL 1 | Discriminant | 4000–400 cm−1 | ||||
MODEL 2 | Relative | 3636–3173 cm−1 and 1790–1692 cm−1 | 0.9771 | 0.8765 | 4.590 | 12.70 |
MODEL 3 | 3699–435 cm−1 | 0.9635 | 0.9022 | 0.649 | 1.510 | |
MODEL 4 | 3636–3145 cm−1 and 1790–1692 cm−1 | 0.9440 | 0.9191 | 1.690 | 2.640 | |
MODEL 5 | 1852–1685 cm−1 | 0.9672 | 0.8186 | 0.388 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palani, B.K.; Siol, M.; Makouie, S.; Bryś, J.; Gruczyńska-Sękowska, E.; Koczoń, P. Investigation of Oil Extracted from Roasted and Unroasted Oats with Use of Chemometrics. Appl. Sci. 2024, 14, 11481. https://doi.org/10.3390/app142411481
Palani BK, Siol M, Makouie S, Bryś J, Gruczyńska-Sękowska E, Koczoń P. Investigation of Oil Extracted from Roasted and Unroasted Oats with Use of Chemometrics. Applied Sciences. 2024; 14(24):11481. https://doi.org/10.3390/app142411481
Chicago/Turabian StylePalani, Bharani Kumar, Marta Siol, Sina Makouie, Joanna Bryś, Eliza Gruczyńska-Sękowska, and Piotr Koczoń. 2024. "Investigation of Oil Extracted from Roasted and Unroasted Oats with Use of Chemometrics" Applied Sciences 14, no. 24: 11481. https://doi.org/10.3390/app142411481
APA StylePalani, B. K., Siol, M., Makouie, S., Bryś, J., Gruczyńska-Sękowska, E., & Koczoń, P. (2024). Investigation of Oil Extracted from Roasted and Unroasted Oats with Use of Chemometrics. Applied Sciences, 14(24), 11481. https://doi.org/10.3390/app142411481